首先,我想声明这是作业。
通常情况下,我们会在完成任务后发布我会发布问题的作业,并且我希望继续使用它来提高我的能力,但在这种情况下,我只是难倒!
我们的任务是使用二进制文件实现快速排序,只使用file.seek,file.read和file.write命令。这是一个整数的二进制文件。
我遇到的问题是递归部分,在枢轴的“子树”上调用函数。我一直在关注本网站上提出的算法:http://xoax.net/comp_sci/crs/algorithms/lessons/Lesson4/并且一直使用代码示例作为我的二进制文件实现的伪代码。
这是我的代码:
//Algorithm and code example used:
void manage( fstream & file , int lindex , int fSize ){
//Chunks of 1 or 0 do not need sorting
if( fSize <= 1 )
return;
//Choose point in file as "pivot." Pivot is a value.
//pp is the index of "pivot"
int pp = (rand() % fSize) + lindex;
file.seekp( pp * sizeof( int ) , file.beg );
int pivot;
file.read( (char*)&pivot , sizeof( int ) );
//Choose "indices" to be swapped. These will be used in seekp
int leftIndex = lindex;
int rightIndex = fSize - 1;
//Swap val , swap val, temp storage, swap index 1 , swap index 2
int leftSwap , rightSwap , temp , tempI1 , tempI2 = 0;
//Dummy indecies to help with tracking partitions.
int dumL = leftIndex;
int dumR = rightIndex;
while( dumL < dumR ){
//Move to left index from the file beginning.
file.seekp( dumL * sizeof( int ) , file.beg );
do{
tempI1 = file.tellp() / sizeof( int );
dumL = tempI1;
file.read( (char*)&temp , sizeof( int ) );
}
while( temp < pivot );
leftSwap = temp;
//Move to right index.
file.seekp( dumR * sizeof( int ) , file.beg );
int n = 1;
do{
tempI2 = file.tellp() / sizeof( int );
dumR = tempI2;
file.read( (char*)&temp , sizeof( int ) );
file.seekp( ( rightIndex - n ) * sizeof( int ) , file.beg );
n++;
}
while( temp > pivot );
rightSwap = temp;
//Swap values
int hold = 0;
if( leftSwap == rightSwap && rightSwap == pivot )
break;
file.seekp( tempI1 * sizeof( int ) , file.beg );
file.read( (char*)&hold , sizeof( int ) );
file.seekp( tempI1 * sizeof( int ) , file.beg );
file.write( (char*)&rightSwap , sizeof( int ) );
file.seekp( tempI2 * sizeof( int ) , file.beg );
file.write( (char*)&leftSwap , sizeof( int ) );
}
cout << "pp: " << pp << endl;
cout << "dumL: " << dumL << endl;
cout << "dumR: " << dumR << endl << endl;
//cout << "Lmanage: \n\t Lindex: 0\n\tSize: " << dumL << endl;
manage( file , 0 , dumL );
//cout << "Rmanage: \n\t Lindex: " << dumL + 1 << "\n\tSize: " << fSize - dumL - 1 << endl;
manage( file , dumL + 1 , fSize - (dumL - leftIndex) - 1 );
}
void quicksort( fstream & file , int iSize ){
srand( ( unsigned int ) time( 0 ) );
manage( file , 0 , iSize );
}
int main( int argc, char* argv[] ){
if( argc != 2 ){
cout << "Invalid number of arguments.\n";
return -1;
}
fstream file;
int x = 0;
file.open( argv[1] , ios::binary | ios::out | ios::in );
//Calculate number of ints in file.
file.seekg( 0 , file.end );
int size = file.tellg() / sizeof( int );
cout << "size: " << size << endl;
quicksort( file , size );
return 0;
}
“arg”是一个包含100个整数的二进制文件,可能有重复。问题是它似乎排序第一个1/4,但索引混淆了,“size”参数变为负数。
编辑:添加了我的主要内容,并根据评论更新了更新。
答案 0 :(得分:1)
我意识到就地qsort算法可能不是一个受欢迎的选择,但它使这个特定的实例更容易理解。请参阅以下内容:
#include <iostream>
#include <fstream>
#include <vector>
#include <cstdlib>
#include <random>
using namespace std;
static void quicksort_stream(std::iostream& st,
std::ios::off_type left, // inclusive
std::ios::off_type right, // exclusive
unsigned int indent=0)
{
std::ios::off_type len = (right - left);
if (len <= 1)
return;
// an interesting way of looking at the sort.
std::string sIndent(indent,' ');
cerr << sIndent << left << ',' << right << endl;
// choose a random pivot index form our range:
std::ios::off_type pivot_idx = left + std::rand() % (len-1);
// get the pivot value, then swap the *last* value in our
// range into the pivot slot. it will be putting the pivot
// value in when were done.
int pivot = 0, val = 0;
st.seekg(pivot_idx * sizeof(int), ios::beg);
st.read((char*)&pivot, sizeof(int));
st.seekg((right-1) * sizeof(int), ios::beg);
st.read((char*)&val, sizeof(int));
st.seekg(pivot_idx * sizeof(int), ios::beg);
st.write((char*)&val, sizeof(int));
// now start the partition scan.
pivot_idx = left;
for (std::ios::off_type i=left; i<(right-1);++i)
{
st.seekg(i * sizeof(int), ios::beg);
st.read((char*)&val, sizeof(int));
if (val < pivot)
{
// swap the current selection with whatever is at
// the curent pivot index.
int val2 = 0;
st.seekg(pivot_idx * sizeof(int), ios::beg);
st.read((char*)&val2, sizeof(int));
st.seekg(i * sizeof(int), ios::beg);
st.write((char*)&val2, sizeof(int));
st.seekg(pivot_idx * sizeof(int), ios::beg);
st.write((char*)&val, sizeof(int));
++pivot_idx;
}
}
// store the pivot value back at the pivot index,
// placing that value in the last slot of the partition.
st.seekg(pivot_idx * sizeof(int), ios::beg);
st.read((char*)&val, sizeof(int));
st.seekg((right-1) * sizeof(int), ios::beg);
st.write((char*)&val, sizeof(int));
st.seekg(pivot_idx * sizeof(int), ios::beg);
st.write((char*)&pivot, sizeof(int));
// and finally,invoke on subsequences. skipping the pivot index
quicksort_stream(st, left, pivot_idx, indent+1);
quicksort_stream(st, pivot_idx+1, right, indent+1);
}
int main(int argc, char *argv[])
{
if (argc < 2)
return EXIT_FAILURE;
// create a vector of 100 random int values in [1,1000]
std::vector<int> vals;
// build generator
std::random_device rd;
std::mt19937 rgen(rd());
std::uniform_int_distribution<> dist(0, 999);
std::generate_n(std::back_inserter(vals), 100, [&dist,&rgen](){ return dist(rgen); });
// open the output file and dump this to that location.
std::fstream fs(argv[1], ios::out|ios::binary);
fs.write((const char*)vals.data(), vals.size() * sizeof(vals[0]));
fs.flush();
fs.close();
// now open the stream and sort it
fs.open(argv[1], ios::in|ios::out|ios::binary);
quicksort_stream(fs, 0, 100);
fs.flush();
fs.close();
// clear the content of the exiting vector.
std::fill(vals.begin(), vals.end(), 0);
fs.open(argv[1], ios::in|ios::binary);
fs.read((char *)vals.data(), vals.size() * sizeof(vals[0]));
cout << endl << "Sorted" << endl;
std::copy(vals.begin(), vals.end(), std::ostream_iterator<int>(cout, "\n"));
return 0;
}
我在其中包含了一个递归缩进的'print'机制,以演示quicksort的性质及其工作原理。样本运行的输出如下所示。我希望它可以帮助你。
示例输出
0,100
0,66
2,66
2,23
2,20
2,5
6,20
6,15
6,11
7,11
9,11
12,15
12,14
16,20
17,20
17,19
21,23
24,66
24,62
24,44
24,29
24,26
27,29
30,44
30,42
30,32
33,42
33,39
33,37
33,35
40,42
45,62
45,60
46,60
46,52
46,48
49,52
50,52
53,60
53,59
53,57
55,57
63,66
67,100
67,72
67,69
70,72
73,100
73,94
73,85
73,80
73,75
76,80
76,78
81,85
81,84
82,84
86,94
86,89
90,94
90,92
95,100
95,99
97,99
Sorted
3
8
23
27
40
54
68
78
90
97
118
120
127
130
139
149
153
155
158
168
201
210
221
235
240
241
247
260
271
274
285
292
311
317
325
327
330
332
334
362
371
410
415
427
444
478
481
487
492
499
499
513
540
542
543
543
556
567
575
578
621
624
634
634
635
661
676
676
690
693
694
706
739
777
780
793
793
798
822
834
835
836
836
850
865
871
883
884
900
903
907
917
924
924
935
943
945
946
983
996