我正在试图弄清楚如何将坐标在空间参考GDA94(EPSG 4283)中的多边形转换为xy坐标(反仿射变换矩阵)。
以下代码有效:
import sys
import numpy as np
from osgeo import gdal
from osgeo import gdalconst
from shapely.geometry import Polygon
from shapely.geometry.polygon import LinearRing
# Bounding Box (via App) approximating part of QLD.
poly = Polygon(
LinearRing([
(137.8, -10.6),
(153.2, -10.6),
(153.2, -28.2),
(137.8, -28.2),
(137.8, -10.6)
])
)
# open raster data
ds = gdal.Open(sys.argv[1], gdalconst.GA_ReadOnly)
# get inverse transform matrix
(success, inv_geomatrix) = gdal.InvGeoTransform(ds.GetGeoTransform())
print inv_geomatrix
# build numpy rotation matrix
rot = np.matrix(([inv_geomatrix[1], inv_geomatrix[2]], [inv_geomatrix[4], inv_geomatrix[5]]))
print rot
# build numpy translation matrix
trans = np.matrix(([inv_geomatrix[0]], [inv_geomatrix[3]]))
print trans
# build affine transformation matrix
affm = np.matrix(([inv_geomatrix[1], inv_geomatrix[2], inv_geomatrix[0]],
[inv_geomatrix[4], inv_geomatrix[5], inv_geomatrix[3]],
[0, 0, 1]))
print affm
# poly is now a shapely geometry in gd94 coordinates -> convert to pixel
# - project poly onte raster data
xy = (rot * poly.exterior.xy + trans).T # need to transpose here to have a list of (x,y) pairs
print xy
这是印刷矩阵的输出:
(-2239.4999999999995, 20.0, 0.0, -199.49999999999986, 0.0, -20.0)
[[ 20. 0.]
[ 0. -20.]]
[[-2239.5]
[ -199.5]]
[[ 2.00000000e+01 0.00000000e+00 -2.23950000e+03]
[ 0.00000000e+00 -2.00000000e+01 -1.99500000e+02]
[ 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
[[ 516.5 12.5]
[ 824.5 12.5]
[ 824.5 364.5]
[ 516.5 364.5]
[ 516.5 12.5]]
有没有办法用scipy.ndimage
的{{1}}函数执行此操作?
答案 0 :(得分:1)
有几个选择。并非所有空间变换都在线性空间中,因此它们不能全部使用仿射变换,因此不要总是依赖它。如果您有两个EPSG SRID,则可以使用GDAL的OSR模块进行通用空间变换。 I wrote an example a while back,可以改编。
否则,仿射变换具有基本数学:
/ a b xoff \
[x' y' 1] = [x y 1] | d e yoff |
\ 0 0 1 /
or
x' = a * x + b * y + xoff
y' = d * x + e * y + yoff
可以通过点列表在Python中实现。
# original points
pts = [(137.8, -10.6),
(153.2, -10.6),
(153.2, -28.2),
(137.8, -28.2)]
# Interpret result from gdal.InvGeoTransform
# see http://www.gdal.org/classGDALDataset.html#af9593cc241e7d140f5f3c4798a43a668
xoff, a, b, yoff, d, e = inv_geomatrix
for x, y in pts:
xp = a * x + b * y + xoff
yp = d * x + e * y + yoff
print((xp, yp))
这与Shapely shapely.affinity.affine_transform
function中使用的基本算法相同。
from shapely.geometry import Polygon
from shapely.affinity import affine_transform
poly = Polygon(pts)
# rearrange the coefficients in the order expected by affine_transform
matrix = (a, b, d, e, xoff, yoff)
polyp = affine_transform(poly, matrix)
print(polyp.wkt)
最后,值得一提的是scipy.ndimage.interpolation.affine_transform
function适用于图像或栅格数据,而非矢量数据。