对于数值方法类,我需要编写一个程序来评估Simpson复合规则的定积分。我已经走到这一步了(见下文),但我的回答并不正确。我用f(x)= x测试程序,积分在0到1之间,结果应为0.5。我得到0.78746 ...等 我知道Scipy有一个Simpson规则,但我真的需要自己编写。
我怀疑这两个循环有问题。之前我试过“for i in range(1,n,2)”和“for i in range(2,n-1,2)”,这给了我0.41668333的结果......等等。 我也试过“x + = h”,我尝试了“x + = i * h”。第一个给了我0.3954,第二个选项给了我7.9218。
# Write a program to evaluate a definite integral using Simpson's rule with
# n subdivisions
from math import *
from pylab import *
def simpson(f, a, b, n):
h=(b-a)/n
k=0.0
x=a
for i in range(1,n/2):
x += 2*h
k += 4*f(x)
for i in range(2,(n/2)-1):
x += 2*h
k += 2*f(x)
return (h/3)*(f(a)+f(b)+k)
def function(x): return x
print simpson(function, 0.0, 1.0, 100)
答案 0 :(得分:4)
您可能忘记在第二个循环之前初始化x
,同时,启动条件和迭代次数都已关闭。这是正确的方法:
def simpson(f, a, b, n):
h=(b-a)/n
k=0.0
x=a + h
for i in range(1,n/2 + 1):
k += 4*f(x)
x += 2*h
x = a + 2*h
for i in range(1,n/2):
k += 2*f(x)
x += 2*h
return (h/3)*(f(a)+f(b)+k)
你的错误与循环不变量的概念有关。不要过多地了解细节,通常更容易理解和调试循环结束时的循环,而不是在开始时,我将x += 2 * h
行移到最后,这样可以很容易地验证总和开始的地方。在您的实现中,有必要为第一个循环指定一个奇怪的x = a - h
,仅将2 * h
添加到循环中作为第一行。
答案 1 :(得分:1)
使代码工作所需要做的就是在函数bounds()中为a和b添加一个变量,并在f(x)中添加一个使用变量x的函数。如果需要,你也可以直接将函数和边界实现到simpsonsRule函数中......而且,这些函数可以被赋予程序,而不是程序本身。
def simpsonsRule(n):
"""
simpsonsRule: (int) -> float
Parameters:
n: integer representing the number of segments being used to
approximate the integral
Pre conditions:
Function bounds() declared that returns lower and upper bounds of integral.
Function f(x) declared that returns the evaluated equation at point x.
Parameters passed.
Post conditions:
Returns float equal to the approximate integral of f(x) from a to b
using Simpson's rule.
Description:
Returns the approximation of an integral. Works as of python 3.3.2
REQUIRES NO MODULES to be imported, especially not non standard ones.
-Code by TechnicalFox
"""
a,b = bounds()
sum = float()
sum += f(a) #evaluating first point
sum += f(b) #evaluating last point
width=(b-a)/(2*n) #width of segments
oddSum = float()
evenSum = float()
for i in range(1,n): #evaluating all odd values of n (not first and last)
oddSum += f(2*width*i+a)
sum += oddSum * 2
for i in range(1,n+1): #evaluating all even values of n (not first and last)
evenSum += f(width*(-1+2*i)+a)
sum += evenSum * 4
return sum * width/3
def bounds():
"""
Description:
Function that returns both the upper and lower bounds of an integral.
"""
a = #>>>INTEGER REPRESENTING LOWER BOUND OF INTEGRAL<<<
b = #>>>INTEGER REPRESENTING UPPER BOUND OF INTEGRAL<<<
return a,b
def f(x):
"""
Description:
Function that takes an x value and returns the equation being evaluated,
with said x value.
"""
return #>>>EQUATION USING VARIABLE X<<<
答案 2 :(得分:0)
您可以使用此程序通过使用Simpson的1/3规则计算定积分。您可以通过增加变量面板的值来提高准确性。
import numpy as np
def integration(integrand,lower,upper,*args):
panels = 100000
limits = [lower, upper]
h = ( limits[1] - limits[0] ) / (2 * panels)
n = (2 * panels) + 1
x = np.linspace(limits[0],limits[1],n)
y = integrand(x,*args)
#Simpson 1/3
I = 0
start = -2
for looper in range(0,panels):
start += 2
counter = 0
for looper in range(start, start+3):
counter += 1
if (counter ==1 or counter == 3):
I += ((h/3) * y[looper])
else:
I += ((h/3) * 4 * y[looper])
return I
例如:
def f(x,a,b):
return a * np.log(x/b)
I = integration(f,3,4,2,5)
print(I)
将在3和4区间内整合2ln(x / 5)
答案 3 :(得分:0)
有我的代码(我认为这是最简单的方法)。我是在jupyter笔记本中完成的。 Simpson方法最简单,最准确的代码是1/3。
对于标准方法(a = 0,h = 4,b = 12)和f = 100-(x ^ 2)/ 2
我们得到了: n = 3.0,y0 = 100.0,y1 = 92.0,y2 = 68.0,y3 = 28.0,
因此,辛普森方法= h / 3 *(y0 + 4 * y1 + 2 * y2 + y3)= 842.7(这是不正确的)。 使用1/3规则,我们得到:
h = h / 2 = 4/2 = 2,然后:
n = 3.0,y0 = 100.0,y1 = 98.0,y2 = 92.0,y3 = 82.0,y4 = 68.0,y5 = 50.0,y6 = 28.0,
现在我们计算每一步的积分(n = 3 = 3步):
第一步的积分:h / 3 *(y0 + 4 * y1 + y2)= 389.3333333333333
第二步的积分:h / 3 *(y2 + 4 * y3 + y4)= 325.3333333333333
第三步的积分:h / 3 *(y4 + 4 * y5 + y6)= 197.33333333333331
总之,我们得到912.0,这是真的
x=0
b=12
h=4
x=float(x)
h=float(h)
b=float(b)
a=float(x)
def fun(x):
return 100-(x**2)/2
h=h/2
l=0 #just numeration
print('n=',(b-x)/(h*2))
n=int((b-a)/h+1)
y = [] #tablica/lista wszystkich y / list of all "y"
yf = []
for i in range(n):
f=fun(x)
print('y%s' %(l),'=',f)
y.append(f)
l+=1
x+=h
print(y,'\n')
n1=int(((b-a)/h)/2)
l=1
for i in range(n1):
nf=(h/3*(y[+0]+4*y[+1]+y[+2]))
y=y[2:] # with every step, we deleting 2 first "y" and we move 2 spaces to the right, i.e. y2+4*y3+y4
print('Całka dla kroku/Integral for a step',l,'=',nf)
yf.append(nf)
l+=1
print('\nWynik całki/Result of the integral =', sum(yf) )
在一开始,我添加了简单的数据输入:
d=None
while(True):
print("Enter your own data or enter the word "test" for ready data.\n")
x=input ('Enter the beginning of the interval (a): ')
if x == 'test':
x=0
h=4 #krok (Δx)
b=12 #granica np. 0>12
#w=(20*x)-(x**2) lub (1+x**3)**(1/2)
break
h=input ('Enter the size of the integration step (h): ')
if h == 'test':
x=0
h=4
b=12
break
b=input ('Enter the end of the range (b): ')
if b == 'test':
x=0
h=4
b=12
break
d=input ('Give the function pattern: ')
if d == 'test':
x=0
h=4
b=12
break
elif d != -9999.9:
break
x=float(x)
h=float(h)
b=float(b)
a=float(x)
if d == None or d == 'test':
def fun(x):
return 100-(x**2)/2 #(20*x)-(x**2)
else:
def fun(x):
w = eval(d)
return w
h=h/2
l=0 #just numeration
print('n=',(b-x)/(h*2))
n=int((b-a)/h+1)
y = [] #tablica/lista wszystkich y / list of all "y"
yf = []
for i in range(n):
f=fun(x)
print('y%s' %(l),'=',f)
y.append(f)
l+=1
x+=h
print(y,'\n')
n1=int(((b-a)/h)/2)
l=1
for i in range(n1):
nf=(h/3*(y[+0]+4*y[+1]+y[+2]))
y=y[2:]
print('Całka dla kroku/Integral for a step',l,'=',nf)
yf.append(nf)
l+=1
print('\nWynik całki/Result of the integral =', sum(yf) )
答案 4 :(得分:0)
为a = 0和b = pi / 4的积分sinX实现辛普森规则的示例。并使用10个面板进行集成
def simpson(f, a, b, n):
x = np.linspace(a, b, n+1)
w = 2*np.ones(n+1); w[0] = 1.0; w[-1] = 1;
for i in range(len(w)):
if i % 2 == 1:
w[i] = 4
width = x[1] - x[0]
area = 0.333 * width * np.sum( w*f(x))
return area
f = lambda x: np.sin(x)
a = 0.0; b = np.pi/4
areaSim = simpson(f, a, b, 10)
print(areaSim)
答案 5 :(得分:0)
def simps(f, a, b, N): # N must be an odd integer
""" define simpson method, a and b are the lower and upper limits of
the interval, N is number of points, dx is the slice
"""
integ = 0
dx = float((b - a) / N)
for i in range(1,N-1,2):
integ += f((a+(i-1)*dx)) + 4*f((a+i*dx)) + f((a+(i+1)*dx))
integral = dx/3.0 * integ
# if number of points is even, then error araise
if (N % 2) == 0:
raise ValueError("N must be an odd integer.")
return integral
def f(x):
return x**2
integrate = simps(f,0,1,99)
print(integrate)