我正在尝试使用简单的反向传播和单热编码将2D数据分类为多层神经网络中的3个类。在我将增量学习改为批量学习之后,我的输出收敛到0([0,0,0]
),主要是因为我使用更多数据或更高的学习速度。我不知道是否必须推导出其他东西,或者我是否在代码中犯了一些错误。
for each epoch: #pseudocode
for each input:
caluclate hiden neurons activations (logsig)
calculate output neurons activations (logsig)
#error propagation
for i in range(3):
error = (desired_out[i] - aktivations_out[i])
error_out[i] = error * deriv_logsig(aktivations_out[i])
t_weights_out = zip(*weights_out)
for i in range(hiden_neurons):
sum_error = sum(e*w for e, w in zip(error_out, t_weights_out[i]))
error_h[i] = sum_error * deriv_logsig(input_out[i])
#cumulate deltas
for i in range(len(weights_out)):
delta_out[i] = [d + x * coef * error_out[i] for d, x in zip(delta_out[i], input_out)]
for i in range(len(weights_h)):
delta_h[i] = [d + x * coef * error_h[i] for d, x in zip(delta_h[i], input)]
#batch learning after epoch
for i in range(len(weights_out)):
weights_out[i] = [w + delta for w, delta in zip(weights_out[i], delta_out[i])]
for i in range(len(weights_h)):
weights_h[i] = [w + delta for w, delta in zip(weights_h[i], delta_h[i])]
答案 0 :(得分:0)
我会尝试一些玩具示例,我确定NN会如何表现并调试我的代码。如果我确定我的代码是有效的NN并且我仍然没有得到好的结果,我会尝试更改NN的参数。但它可能非常耗时,因此我会采用一些更简单的ML技术,例如决策树不是黑盒子作为NN。使用决策树,您应该更容易,更快地找到解决方案。问题是你是否可以在NN以外实现它......