我已经在OpenCV中使用C ++实现了光流代码。但是,我想检测一半图像帧中的光流。我应该编辑哪一部分?它来自下面的这个功能吗?
cvCalcOpticalFlowPyrLK(
frame1_1C, frame2_1C,
pyramid1, pyramid2,
frame1_features,
frame2_features,
number_of_features,
optical_flow_window,
5,
optical_flow_found_feature,
optical_flow_feature_error,
optical_flow_termination_criteria,
0 );
答案 0 :(得分:1)
没有。函数本身不需要进行任何更改。您需要做的只是将要计算光流量的图像部分传递给函数。
您可以定义要在其上执行光流计算的图像范围。使用
wanted_image = image(范围(x1,y1),范围(x2,y2))
以下是基于samples文件夹中的lkdemo.cpp的工作代码。唯一值得改变的是
灰色=灰色(范围(1,480),范围(1,320)); //给出图像的左半部分
定义了感兴趣的区域。
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>
using namespace cv;
using namespace std;
static void help()
{
cout << "*** Using OpenCV version " << CV_VERSION <<" ***"<< endl;
cout << "\n\nUsage: \n"
"\tESC - quit the program\n"
"\tr - auto-initialize tracking\n"
"\tc - delete all the points\n"
"\tn - switch the \"night\" mode on/off\n"<< endl;
}
int main( int argc, char** argv )
{
help();
//Termination of the algo after 20 iterations or accuracy going under 0.03
TermCriteria termcrit(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.3);
Size subPixWinSize(10,10), winSize(31,31);
const int MAX_COUNT = 500;
bool needToInit = false;
bool nightMode = false;
//Video capture is from the default device i.e. the webcam
VideoCapture cap(0);
if( !cap.isOpened() )
{
cout << "Could not initialize capturing...\n";
return 0;
}
namedWindow( "Half screen Optical flow Demo!", 1 );
Mat gray, prevGray, image;
vector<Point2f> points[2];
for(;;)
{
Mat frame;
//Output from the Videocapture is piped to 'frame'
cap >> frame;
if( frame.empty() )
break;
frame.copyTo(image);
cvtColor(image, gray, COLOR_BGR2GRAY);
// Night mode not disabled
if( nightMode )
image = Scalar::all(0);
gray = gray(Range(1,480), Range(1,320));
if( needToInit || points[0].size()<=5)
{
goodFeaturesToTrack(gray, points[1], MAX_COUNT, 0.01, 10, Mat(), 3, 0, 0.4);
cornerSubPix(gray, points[1], subPixWinSize, Size(-1,-1), termcrit);
}
else if( !points[0].empty() )
{
vector<uchar> status;
vector<float> err;
if(prevGray.empty())
gray.copyTo(prevGray);
calcOpticalFlowPyrLK(prevGray, gray, points[0], points[1], status, err, winSize, 3, termcrit, 0, 0.001);
size_t i, k;
for( i = k = 0; i < points[1].size(); i++ )
{
if( !status[i] )
continue;
points[1][k++] = points[1][i];
circle(image, points[1][i], 3, Scalar(0,255,0), -1, 8);
}
points[1].resize(k);
}
needToInit = false;
imshow("Half screen Optical flow Demo!", image);
char c = (char)waitKey(10);
if( c == 27 )
break;
switch( c )
{
case 'r':
needToInit = true;
break;
case 'c':
points[0].clear();
points[1].clear();
break;
case 'n':
nightMode = !nightMode;
break;
}
std::swap(points[1], points[0]);
cv::swap(prevGray, gray);
}
cap.release();
return 0;
}
答案 1 :(得分:0)
如果您只想在图像的一半中检测光流,那么您可以简单地将图像的一半(frame1_1C,frame2_1C)作为参数。例如,下面的代码初始化属于frame1_1C左半部分的矩阵:
cv::Mat frame1_1C_half(frame1_1C, cv::Range(0, frame1_1C.rows), cv::Range(0, frame1_1C.cols/2));