在CUDA GPU上改进A * x = B的Matlab + CUSP MEX解决方案

时间:2013-04-09 16:53:08

标签: matlab gpu mex sparse-matrix cula

Matlab仍无法在CUDA GPU上计算稀疏矩阵。也没有这样的工具箱(Jacket已经停产)。这就是我使用通过MEX文件集成到Matlab的CUSP的原因。但是,我开发的工具有两个问题:

  • 对于大方程系统来说非常不稳定(实际上只从100个元素开始),
  • 比Matlab CPU替代品慢几十或几百倍。

我正在解决A * x = b,其中A是稀疏的对称矩阵,b是矢量。

硬件规格:Intel i7 3630QM,GT640M 2G,8 GB DDR3。 软件:Windows 8 64位,Matlab R2012b 64位,CUDA 5.0 64位,CUSP 0.3.1,Windows SDK v7.0,VS2010编译器。

MEX代码:

#include<cusp/csr_matrix.h>
#include <cusp/krylov/bicgstab.h>
#include <matrix.h>
#include <mex.h> 
#include <time.h>

void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[])
{
        double t1 =  clock();
          // data from Matlab       
        double *b = mxGetPr(prhs[1]);
        double *A = mxGetPr(prhs[0]);
        int n = mxGetM(prhs[0]);
        mwIndex *ir = mxGetIr(prhs[0]);
        mwIndex *jc = mxGetJc(prhs[0]);
        int N = jc[n];
        t1 = clock() - t1;

        double t2 =  clock();
          // initialization of matrix A in CSR format (jc and ir are exchanged, because Matlab uses CSC format
        cusp::csr_matrix<int,float,cusp::device_memory> Ag(n,n,3*n-2);
        thrust::copy(jc, jc + n + 1, Ag.row_offsets.begin());
        thrust::copy(ir, ir + N,     Ag.column_indices.begin());
        thrust::copy(A,  A  + N,     Ag.values.begin()); 
          // initialization of vector b
        cusp::array1d<float, cusp::device_memory> bg (b, b+n);
        cusp::array1d<float, cusp::device_memory> xg (n, 0);
        t2 = clock() - t2;

        double t3 =  clock();
          // bicgstab algorithm solution for vector x, when using 0.001 accuracy and precondition M
          // this is the slowest part, much slower than others
        cusp::verbose_monitor<float> monitor(bg, 5000, 1e-3);
        cusp::identity_operator<float, cusp::device_memory> M(n, n);
        cusp::krylov::bicgstab(Ag, xg, bg, monitor, M);        
        t3 = clock() - t3;

        double t4 =  clock();     
          // gathering solution vector bact on host to Matlab array T
        mxArray *T = mxCreateDoubleMatrix(n, 1, mxREAL);
        double *x  = mxGetPr(T);
        thrust::copy(xg.begin(), xg.end(), x);
        t4 = clock() - t4;

          // gathering execution times to Matlab array times
        mxArray *times=mxCreateDoubleMatrix(5, 1, mxREAL);
        double *timesb=mxGetPr(times);
        timesb[0]=t1; timesb[1]=t2; timesb[2]=t3; timesb[3]=t4; timesb[4]=monitor.iteration_count();

          // sending data back to Matlab
        plhs[0] = times; 
        plhs[1] = T;
} 

使用这些命令在Matlab上的MEX文件(ex.cu)中编译此代码(如有必要,将第二个命令更改为32位):

>> !nvcc -c -arch sm_20 ex.cu -Xcompiler -fPIC -I "C:\Program Files\MATLAB\R2012b\extern\include" -I "C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\include
>> mex ex.obj -L"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.0\lib\x64" -lcudart

样本矩阵,向量和编译的64位MEX函数:http://www.failai.lt/3fqkhvoslxyt/sampleData.7z.htm

使用:

tic; [times,x]=ex(K',F); toc;   %K has to be transposed for CSR

其中 - 时间 - 单独的执行时间,最后一个元素 - 用于解决方案的迭代计数(bicgstab监视器),结果 - K * x = F的解。

结果(http://www.failai.lt/rupaliln7kfb/results.7z.htm):

  • K_int_6,F_int_6 - ok
  • K_11,F_11 - x(1)错误,其他人确定
  • K_100000,F_100000 - x(1)错误,其他人从一开始就可以,但是后来与正确的结果相比正在下降。
  • K_100000,F_100000 - 执行在GPU(MEX)上持续0.6秒,在CPU上持续0.014秒( tic; xcpu = K \ F; toc; )。

你能看一下那段代码,也许试试MEX功能,报告你的结果,建议如何改进这个功能?也许您知道任何可以在GPU上进行sparce计算的替代方案吗?我希望,在Matlab发布GPU对稀疏矩阵的兼容性之前,它对每个人都有用:)

1 个答案:

答案 0 :(得分:0)

看看matlab文件交换,cusp稀疏类为gpus,支持单精度,实/复: http://www.mathworks.com/matlabcentral/fileexchange/44423-gpu-sparse-accumarray-non-uniform-grid

稀疏矩阵向量乘法与CUSP重载。