Pandas让您可以轻松阅读CSV文件:
pd.read_table('data.txt', sep=',')
Pandas对于具有键值对的文件有类似的东西吗?我想到了这个:
pd.DataFrame([dict([p.split('=') for p in l.split(',')]) for l in open('data.txt')])
如果不是内置的,那么可能是更惯用的东西?
感兴趣的文件如下所示:
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525690751,price=1548.00,quantity=551
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525697183,price=1548.00,quantity=551
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525714498,price=1548.00,quantity=551
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525734967,price=1548.00,quantity=551
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525735567,price=1548.00,quantity=555
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525735585,price=1548.00,quantity=556
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525736116,price=1548.00,quantity=556
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525740757,price=1548.00,quantity=556
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525748502,price=1548.00,quantity=556
symbol=ESM3,exchange=GLOBEX,timestamp=1365428525748952,price=1548.00,quantity=557
每行都有完全相同的键,顺序相同。没有空值。要生成的表是:
exchange price quantity symbol timestamp
0 GLOBEX 1548.00 551\n ESM3 1365428525690751
1 GLOBEX 1548.00 551\n ESM3 1365428525697183
2 GLOBEX 1548.00 551\n ESM3 1365428525714498
3 GLOBEX 1548.00 551\n ESM3 1365428525734967
4 GLOBEX 1548.00 555\n ESM3 1365428525735567
5 GLOBEX 1548.00 556\n ESM3 1365428525735585
6 GLOBEX 1548.00 556\n ESM3 1365428525736116
7 GLOBEX 1548.00 556\n ESM3 1365428525740757
8 GLOBEX 1548.00 556\n ESM3 1365428525748502
9 GLOBEX 1548.00 557\n ESM3 1365428525748952
(我可以在我带入\n
之后将quantity
移除rstrip()
。)
答案 0 :(得分:4)
如果事先知道了密钥名称,并且名称总是以相同的顺序出现,那么您可以使用转换器来删除密钥名称,然后使用names
参数来命名列:< / p>
import pandas as pd
def value(item):
return item[item.find('=')+1:]
df = pd.read_table('data.txt', header=None, delimiter=',',
converters={i:value for i in range(5)},
names='symbol exchange timestamp price quantity'.split())
print(df)
发布的数据产量
symbol exchange timestamp price quantity
0 ESM3 GLOBEX 1365428525690751 1548.00 551
1 ESM3 GLOBEX 1365428525697183 1548.00 551
2 ESM3 GLOBEX 1365428525714498 1548.00 551
3 ESM3 GLOBEX 1365428525734967 1548.00 551
4 ESM3 GLOBEX 1365428525735567 1548.00 555
5 ESM3 GLOBEX 1365428525735585 1548.00 556
6 ESM3 GLOBEX 1365428525736116 1548.00 556
7 ESM3 GLOBEX 1365428525740757 1548.00 556
8 ESM3 GLOBEX 1365428525748502 1548.00 556
9 ESM3 GLOBEX 1365428525748952 1548.00 557
答案 1 :(得分:2)
我不确定这样做的最佳方法是什么,但假设在值中没有找到分隔符 - 这会让我的大脑想到角落的情况 - 那么这样的事情就不是了超级优雅,但很简单:
>>> df = pd.read_csv("esm.csv", sep=",|=", header=None)
>>> df2 = df.ix[:,1::2]
>>> df2.columns = list(df.ix[0,0::2])
>>> df2
symbol exchange timestamp price quantity
0 ESM3 GLOBEX 1365428525690751 1548 551
1 ESM3 GLOBEX 1365428525697183 1548 551
2 ESM3 GLOBEX 1365428525714498 1548 551
3 ESM3 GLOBEX 1365428525734967 1548 551
4 ESM3 GLOBEX 1365428525735567 1548 555
5 ESM3 GLOBEX 1365428525735585 1548 556
6 ESM3 GLOBEX 1365428525736116 1548 556
7 ESM3 GLOBEX 1365428525740757 1548 556
8 ESM3 GLOBEX 1365428525748502 1548 556
9 ESM3 GLOBEX 1365428525748952 1548 557
基本上,读取它,然后自己动作,保留其他所有元素,然后修复列名。