运行OpenCV HOG示例

时间:2013-04-09 13:04:49

标签: c++ opencv

任何OpenCV专家? 我对OpenCV有点新意。我想运行ocl文件夹下包含的hog.cpp。我在MSVC ++ 9.0中编译文件时遇到错误

1>------ Build started: Project: hog_ocl, Configuration: Debug Win32 ------
1>Linking...
1>hog.obj : error LNK2019: unresolved external symbol "public: void __thiscall cv::ocl::HOGDescriptor::detectMultiScale(class cv::ocl::oclMat const &,class std::vector<class cv::Rect_<int>,class std::allocator<class cv::Rect_<int> > > &,double,class cv::Size_<int>,class cv::Size_<int>,double,int)" (?detectMultiScale@HOGDescriptor@ocl@cv@@QAEXABVoclMat@23@AAV?$vector@V?$Rect_@H@cv@@V?$allocator@V?$Rect_@H@cv@@@std@@@std@@NV?$Size_@H@3@2NH@Z) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: void __thiscall cv::ocl::oclMat::upload(class cv::Mat const &)" (?upload@oclMat@ocl@cv@@QAEXABVMat@3@@Z) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: void __thiscall cv::ocl::HOGDescriptor::setSVMDetector(class std::vector<float,class std::allocator<float> > const &)" (?setSVMDetector@HOGDescriptor@ocl@cv@@QAEXABV?$vector@MV?$allocator@M@std@@@std@@@Z) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: __thiscall cv::ocl::HOGDescriptor::HOGDescriptor(class cv::Size_<int>,class cv::Size_<int>,class cv::Size_<int>,class cv::Size_<int>,int,double,double,bool,int)" (??0HOGDescriptor@ocl@cv@@QAE@V?$Size_@H@2@000HNN_NH@Z) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: static class std::vector<float,class std::allocator<float> > __cdecl cv::ocl::HOGDescriptor::getPeopleDetector48x96(void)" (?getPeopleDetector48x96@HOGDescriptor@ocl@cv@@SA?AV?$vector@MV?$allocator@M@std@@@std@@XZ) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: static class std::vector<float,class std::allocator<float> > __cdecl cv::ocl::HOGDescriptor::getPeopleDetector64x128(void)" (?getPeopleDetector64x128@HOGDescriptor@ocl@cv@@SA?AV?$vector@MV?$allocator@M@std@@@std@@XZ) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "int __cdecl cv::ocl::getDevice(class std::vector<class cv::ocl::Info,class std::allocator<class cv::ocl::Info> > &,int)" (?getDevice@ocl@cv@@YAHAAV?$vector@VInfo@ocl@cv@@V?$allocator@VInfo@ocl@cv@@@std@@@std@@H@Z) referenced in function "public: void __thiscall App::run(void)" (?run@App@@QAEXXZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: void __thiscall cv::ocl::oclMat::release(void)" (?release@oclMat@ocl@cv@@QAEXXZ) referenced in function "public: __thiscall cv::ocl::oclMat::~oclMat(void)" (??1oclMat@ocl@cv@@QAE@XZ)
1>hog.obj : error LNK2019: unresolved external symbol "public: __thiscall cv::ocl::Info::~Info(void)" (??1Info@ocl@cv@@QAE@XZ) referenced in function "public: void * __thiscall cv::ocl::Info::`scalar deleting destructor'(unsigned int)" (??_GInfo@ocl@cv@@QAEPAXI@Z)
1>C:\Users\CT\Documents\Visual Studio 2008\Projects\hog_ocl\Debug\hog_ocl.exe : fatal error LNK1120: 9 unresolved externals
1>Build log was saved at "file://c:\Users\CT\Documents\Visual Studio 2008\Projects\hog_ocl\hog_ocl\Debug\BuildLog.htm"
1>hog_ocl - 10 error(s), 0 warning(s)
========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========

首先,我在project {&gt; config中包含C:\opencv\build\x86\vc9\lib中的所有库。属性 - &gt;链接器 - &gt;输入。 不幸的是它没有用。因此,通过尝试我排除了没有最小化错误计数的库,并达到了以下列表

opencv_imgproc244.lib
opencv_highgui244.lib
opencv_core244.lib
opencv_objdetect244.lib

仍然无法正常工作。我想知道我是否开始使用对我来说过于先进的错误样本?

添加。信息: 我按照手册安装了OpenCV,甚至重建了库。希望我的程序是正确的。

代码(OpenCV 2.4.4):

#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <iomanip>
#include <stdexcept>
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace std;
using namespace cv;

bool help_showed = false;

class Args
{
public:
    Args();
    static Args read(int argc, char** argv);

    string src;
    bool src_is_video;
    bool src_is_camera;
    int camera_id;

    bool write_video;
    string dst_video;
    double dst_video_fps;

    bool make_gray;

    bool resize_src;
    int width, height;

    double scale;
    int nlevels;
    int gr_threshold;

    double hit_threshold;
    bool hit_threshold_auto;

    int win_width;
    int win_stride_width, win_stride_height;

    bool gamma_corr;
};


class App
{
public:
    App(const Args& s);
    void run();

    void handleKey(char key);

    void hogWorkBegin();
    void hogWorkEnd();
    string hogWorkFps() const;

    void workBegin();
    void workEnd();
    string workFps() const;

    string message() const;

private:
    App operator=(App&);

    Args args;
    bool running;

    bool use_gpu;
    bool make_gray;
    double scale;
    int gr_threshold;
    int nlevels;
    double hit_threshold;
    bool gamma_corr;

    int64 hog_work_begin;
    double hog_work_fps;

    int64 work_begin;
    double work_fps;
};

static void printHelp()
{
    cout << "Histogram of Oriented Gradients descriptor and detector sample.\n"
         << "\nUsage: hog_gpu\n"
         << "  (<image>|--video <vide>|--camera <camera_id>) # frames source\n"
         << "  [--make_gray <true/false>] # convert image to gray one or not\n"
         << "  [--resize_src <true/false>] # do resize of the source image or not\n"
         << "  [--width <int>] # resized image width\n"
         << "  [--height <int>] # resized image height\n"
         << "  [--hit_threshold <double>] # classifying plane distance threshold (0.0 usually)\n"
         << "  [--scale <double>] # HOG window scale factor\n"
         << "  [--nlevels <int>] # max number of HOG window scales\n"
         << "  [--win_width <int>] # width of the window (48 or 64)\n"
         << "  [--win_stride_width <int>] # distance by OX axis between neighbour wins\n"
         << "  [--win_stride_height <int>] # distance by OY axis between neighbour wins\n"
         << "  [--gr_threshold <int>] # merging similar rects constant\n"
         << "  [--gamma_correct <int>] # do gamma correction or not\n"
         << "  [--write_video <bool>] # write video or not\n"
         << "  [--dst_video <path>] # output video path\n"
         << "  [--dst_video_fps <double>] # output video fps\n";
    help_showed = true;
}

int main(int argc, char** argv)
{
    try
    {
        if (argc < 2)
            printHelp();
        Args args = Args::read(argc, argv);
        if (help_showed)
            return -1;
        App app(args);
        app.run();
    }
    catch (const Exception& e) { return cout << "error: "  << e.what() << endl, 1; }
    catch (const exception& e) { return cout << "error: "  << e.what() << endl, 1; }
    catch(...) { return cout << "unknown exception" << endl, 1; }
    return 0;
}


Args::Args()
{
    src_is_video = false;
    src_is_camera = false;
    camera_id = 0;

    write_video = false;
    dst_video_fps = 24.;

    make_gray = false;

    resize_src = false;
    width = 640;
    height = 480;

    scale = 1.05;
    nlevels = 13;
    gr_threshold = 8;
    hit_threshold = 1.4;
    hit_threshold_auto = true;

    win_width = 48;
    win_stride_width = 8;
    win_stride_height = 8;

    gamma_corr = true;
}


Args Args::read(int argc, char** argv)
{
    Args args;
    for (int i = 1; i < argc; i++)
    {
        if (string(argv[i]) == "--make_gray") args.make_gray = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--resize_src") args.resize_src = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--width") args.width = atoi(argv[++i]);
        else if (string(argv[i]) == "--height") args.height = atoi(argv[++i]);
        else if (string(argv[i]) == "--hit_threshold")
        {
            args.hit_threshold = atof(argv[++i]);
            args.hit_threshold_auto = false;
        }
        else if (string(argv[i]) == "--scale") args.scale = atof(argv[++i]);
        else if (string(argv[i]) == "--nlevels") args.nlevels = atoi(argv[++i]);
        else if (string(argv[i]) == "--win_width") args.win_width = atoi(argv[++i]);
        else if (string(argv[i]) == "--win_stride_width") args.win_stride_width = atoi(argv[++i]);
        else if (string(argv[i]) == "--win_stride_height") args.win_stride_height = atoi(argv[++i]);
        else if (string(argv[i]) == "--gr_threshold") args.gr_threshold = atoi(argv[++i]);
        else if (string(argv[i]) == "--gamma_correct") args.gamma_corr = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--write_video") args.write_video = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--dst_video") args.dst_video = argv[++i];
        else if (string(argv[i]) == "--dst_video_fps") args.dst_video_fps = atof(argv[++i]);
        else if (string(argv[i]) == "--help") printHelp();
        else if (string(argv[i]) == "--video") { args.src = argv[++i]; args.src_is_video = true; }
        else if (string(argv[i]) == "--camera") { args.camera_id = atoi(argv[++i]); args.src_is_camera = true; }
        else if (args.src.empty()) args.src = argv[i];
        else throw runtime_error((string("unknown key: ") + argv[i]));
    }
    return args;
}


App::App(const Args& s)
{
    args = s;
    cout << "\nControls:\n"
         << "\tESC - exit\n"
         << "\tm - change mode GPU <-> CPU\n"
         << "\tg - convert image to gray or not\n"
         << "\t1/q - increase/decrease HOG scale\n"
         << "\t2/w - increase/decrease levels count\n"
         << "\t3/e - increase/decrease HOG group threshold\n"
         << "\t4/r - increase/decrease hit threshold\n"
         << endl;

    use_gpu = true;
    make_gray = args.make_gray;
    scale = args.scale;
    gr_threshold = args.gr_threshold;
    nlevels = args.nlevels;

    if (args.hit_threshold_auto)
        args.hit_threshold = args.win_width == 48 ? 1.4 : 0.;
    hit_threshold = args.hit_threshold;

    gamma_corr = args.gamma_corr;

    if (args.win_width != 64 && args.win_width != 48)
        args.win_width = 64;

    cout << "Scale: " << scale << endl;
    if (args.resize_src)
        cout << "Resized source: (" << args.width << ", " << args.height << ")\n";
    cout << "Group threshold: " << gr_threshold << endl;
    cout << "Levels number: " << nlevels << endl;
    cout << "Win width: " << args.win_width << endl;
    cout << "Win stride: (" << args.win_stride_width << ", " << args.win_stride_height << ")\n";
    cout << "Hit threshold: " << hit_threshold << endl;
    cout << "Gamma correction: " << gamma_corr << endl;
    cout << endl;
}


void App::run()
{
    std::vector<ocl::Info> oclinfo;
    ocl::getDevice(oclinfo);
    running = true;
    cv::VideoWriter video_writer;

    Size win_size(args.win_width, args.win_width * 2); //(64, 128) or (48, 96)
    Size win_stride(args.win_stride_width, args.win_stride_height);

    // Create HOG descriptors and detectors here
    vector<float> detector;
    if (win_size == Size(64, 128))
        detector = cv::ocl::HOGDescriptor::getPeopleDetector64x128();
    else
        detector = cv::ocl::HOGDescriptor::getPeopleDetector48x96();

    cv::ocl::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9,
                                   cv::ocl::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
                                   cv::ocl::HOGDescriptor::DEFAULT_NLEVELS);
    cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1,
                              HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS);
    gpu_hog.setSVMDetector(detector);
    cpu_hog.setSVMDetector(detector);

    while (running)
    {
        VideoCapture vc;
        Mat frame;

        if (args.src_is_video)
        {
            vc.open(args.src.c_str());
            if (!vc.isOpened())
                throw runtime_error(string("can't open video file: " + args.src));
            vc >> frame;
        }
        else if (args.src_is_camera)
        {
            vc.open(args.camera_id);
            if (!vc.isOpened())
            {
                stringstream msg;
                msg << "can't open camera: " << args.camera_id;
                throw runtime_error(msg.str());
            }
            vc >> frame;
        }
        else
        {
            frame = imread(args.src);
            if (frame.empty())
                throw runtime_error(string("can't open image file: " + args.src));
        }

        Mat img_aux, img, img_to_show;
        ocl::oclMat gpu_img;

        // Iterate over all frames
        while (running && !frame.empty())
        {
            workBegin();

            // Change format of the image
            if (make_gray) cvtColor(frame, img_aux, CV_BGR2GRAY);
            else if (use_gpu) cvtColor(frame, img_aux, CV_BGR2BGRA);
            else frame.copyTo(img_aux);

            // Resize image
            if (args.resize_src) resize(img_aux, img, Size(args.width, args.height));
            else img = img_aux;
            img_to_show = img;

            gpu_hog.nlevels = nlevels;
            cpu_hog.nlevels = nlevels;

            vector<Rect> found;

            // Perform HOG classification
            hogWorkBegin();
            if (use_gpu)
            {
                gpu_img.upload(img);
                gpu_hog.detectMultiScale(gpu_img, found, hit_threshold, win_stride,
                                         Size(0, 0), scale, gr_threshold);
            }
            else cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride,
                                          Size(0, 0), scale, gr_threshold);
            hogWorkEnd();

            // Draw positive classified windows
            for (size_t i = 0; i < found.size(); i++)
            {
                Rect r = found[i];
                rectangle(img_to_show, r.tl(), r.br(), CV_RGB(0, 255, 0), 3);
            }

            if (use_gpu)
                putText(img_to_show, "Mode: GPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            else
                putText(img_to_show, "Mode: CPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            putText(img_to_show, "FPS (HOG only): " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            putText(img_to_show, "FPS (total): " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            imshow("opencv_gpu_hog", img_to_show);

            if (args.src_is_video || args.src_is_camera) vc >> frame;

            workEnd();

            if (args.write_video)
            {
                if (!video_writer.isOpened())
                {
                    video_writer.open(args.dst_video, CV_FOURCC('x','v','i','d'), args.dst_video_fps,
                                      img_to_show.size(), true);
                    if (!video_writer.isOpened())
                        throw std::runtime_error("can't create video writer");
                }

                if (make_gray) cvtColor(img_to_show, img, CV_GRAY2BGR);
                else cvtColor(img_to_show, img, CV_BGRA2BGR);

                video_writer << img;
            }

            handleKey((char)waitKey(3));
        }
    }
}


void App::handleKey(char key)
{
    switch (key)
    {
    case 27:
        running = false;
        break;
    case 'm':
    case 'M':
        use_gpu = !use_gpu;
        cout << "Switched to " << (use_gpu ? "CUDA" : "CPU") << " mode\n";
        break;
    case 'g':
    case 'G':
        make_gray = !make_gray;
        cout << "Convert image to gray: " << (make_gray ? "YES" : "NO") << endl;
        break;
    case '1':
        scale *= 1.05;
        cout << "Scale: " << scale << endl;
        break;
    case 'q':
    case 'Q':
        scale /= 1.05;
        cout << "Scale: " << scale << endl;
        break;
    case '2':
        nlevels++;
        cout << "Levels number: " << nlevels << endl;
        break;
    case 'w':
    case 'W':
        nlevels = max(nlevels - 1, 1);
        cout << "Levels number: " << nlevels << endl;
        break;
    case '3':
        gr_threshold++;
        cout << "Group threshold: " << gr_threshold << endl;
        break;
    case 'e':
    case 'E':
        gr_threshold = max(0, gr_threshold - 1);
        cout << "Group threshold: " << gr_threshold << endl;
        break;
    case '4':
        hit_threshold+=0.25;
        cout << "Hit threshold: " << hit_threshold << endl;
        break;
    case 'r':
    case 'R':
        hit_threshold = max(0.0, hit_threshold - 0.25);
        cout << "Hit threshold: " << hit_threshold << endl;
        break;
    case 'c':
    case 'C':
        gamma_corr = !gamma_corr;
        cout << "Gamma correction: " << gamma_corr << endl;
        break;
    }
}


inline void App::hogWorkBegin() { hog_work_begin = getTickCount(); }

inline void App::hogWorkEnd()
{
    int64 delta = getTickCount() - hog_work_begin;
    double freq = getTickFrequency();
    hog_work_fps = freq / delta;
}

inline string App::hogWorkFps() const
{
    stringstream ss;
    ss << hog_work_fps;
    return ss.str();
}


inline void App::workBegin() { work_begin = getTickCount(); }

inline void App::workEnd()
{
    int64 delta = getTickCount() - work_begin;
    double freq = getTickFrequency();
    work_fps = freq / delta;
}

inline string App::workFps() const
{
    stringstream ss;
    ss << work_fps;
    return ss.str();
}

2 个答案:

答案 0 :(得分:1)

事实证明,运行此代码需要库opencv_ocl.lib,而ocl文件夹下的其他示例也是如此。必须使用CMake和C编译器(我使用MSVC 2010)在您的设备上构建OpenCV。经过几天的漫长尝试以及在OCL和GPU上进行重建和读取,我成功地构建了它。我只是想知道为什么它不能像其他库那样预先构建并包含在软件包中,是不是因为硬件依赖?

但是,这是ocl\hog.cpp所需的库列表:

opencv_imgproc245.lib
opencv_highgui245.lib
opencv_core245.lib
opencv_objdetect245.lib
opencv_ocl245.lib

使用最新的OpenCV 2.4.5。

答案 1 :(得分:0)

我认为您需要包含features2d库。