我正在编写一个程序来计算Feigenbaum的常数,使用物流方程找到可超值,然后使用这些超可比值的比率来计算常数。
我几乎为所有值使用BigDecimals,这样我就可以在计算常量时保持必要的精度。
我正在调整以下文件的第30-35页的C ++代码中的代码:http://webcache.googleusercontent.com/search?q=cache:xabTioRiF0IJ:home.simula.no/~logg/pub/reports/chaos_hw1.ps.gz+&cd=21&hl=en&ct=clnk&gl=us
我怀疑这项计划对我的问题是否重要。我运行程序,它似乎工作。输出我得到的前4个超级值和前2个是预期的,但是在显示这4行之后,程序似乎就停止了。我没有例外,但即使在等待30分钟后也不再输出计算结果。我无法弄清楚究竟是什么导致它,因为每行的计算时间应该大致相同,但显然不是。这是我的输出:
Feigenbaum constant calculation (using superstable points):
j a d
-----------------------------------------------------
1 2.0 N/A
2 3.23606797749979 N/A
4 3.4985616993277016 4.708943013540503
8 3.554640862768825 4.680770998010695
这是我的代码:
import java.math.*;
// If there is a stable cycle, the iterates of 1/2 converge to the cycle.
// This was proved by Fatou and Julia.
// (What's special about x = 1/2 is that it is the critical point, the point at which the logistic map's derivative is 0.)
// Source: http://classes.yale.edu/fractals/chaos/Cycles/LogisticCycles/CycleGeneology.html
public class Feigenbaum4
{
public static BigDecimal r[] = new BigDecimal[19];
public static int iter = 0;
public static int iter1 = 20; // Iterations for tolerance level 1
public static int iter2 = 10; // Iterations for tolerance level 2
public static BigDecimal tol1 = new BigDecimal("2E-31"); // Tolerance for convergence level 1
public static BigDecimal tol2 = new BigDecimal("2E-27"); // Tolerance for convergence level 2
public static BigDecimal step = new BigDecimal("0.01"); // step when looking for second superstable a
public static BigDecimal x0 = new BigDecimal(".5");
public static BigDecimal aZero = new BigDecimal("2.0");
public static void main(String [] args)
{
System.out.println("Feigenbaum constant calculation (using superstable points):");
System.out.println("j\t\ta\t\t\td");
System.out.println("-----------------------------------------------------");
int n = 20;
if (FindFirstTwo())
{
FindRoots(n);
}
}
public static BigDecimal F(BigDecimal a, BigDecimal x)
{
BigDecimal temp = new BigDecimal("1");
temp = temp.subtract(x);
BigDecimal ans = (a.multiply(x.multiply(temp)));
return ans;
}
public static BigDecimal Dfdx(BigDecimal a, BigDecimal x)
{
BigDecimal ans = (a.subtract(x.multiply(a.multiply(new BigDecimal("2")))));
return ans;
}
public static BigDecimal Dfda(BigDecimal x)
{
BigDecimal temp = new BigDecimal("1");
temp = temp.subtract(x);
BigDecimal ans = (x.multiply(temp));
return ans;
}
public static BigDecimal NewtonStep(BigDecimal a, BigDecimal x, int n)
{
// This function returns the Newton step for finding the root, a,
// of fn(x,a) - x = 0 for a fixed x = X
BigDecimal fval = F(a, x);
BigDecimal dval = Dfda(x);
for (int i = 1; i < n; i++)
{
dval = Dfda(fval).add(Dfdx(a, fval).multiply(dval));
fval = F(a, fval);
}
BigDecimal ans = fval.subtract(x);
ans = ans.divide(dval, MathContext.DECIMAL64);
ans = ans.negate();
return ans;
}
public static BigDecimal Root(BigDecimal a0, int n)
{
// Find the root a of fn(x,a) - x = 0 for fixed x = X
// with Newton’s method. The initial guess is a0.
//
// On return iter is the number of iterations if
// the root was found. If not, iter is -1.
BigDecimal a = a0;
BigDecimal a_old = a0;
BigDecimal ans;
// First iter1 iterations with a stricter criterion,
// tol1 < tol2
for (iter = 0; iter < iter1; iter++)
{
a = a.add(NewtonStep(a, x0, n));
// check for convergence
BigDecimal temp = a.subtract(a_old);
temp = temp.divide(a_old, MathContext.DECIMAL64);
ans = temp.abs();
if (ans.compareTo(tol1) < 0)
{
return a;
}
a_old = a;
}
// If this doesn't work, do another iter2 iterations
// with the larger tolerance tol2
for (; iter < (iter1 + iter2); iter++)
{
a = a.add(NewtonStep(a, x0, n));
// check for convergence
BigDecimal temp = a.subtract(a_old);
temp = temp.divide(a_old, MathContext.DECIMAL64);
ans = temp.abs();
if (ans.compareTo(tol2) < 0)
{
return a;
}
a_old = a;
}
BigDecimal temp2 = a.subtract(a_old);
temp2 = temp2.divide(a_old, MathContext.DECIMAL64);
ans = temp2.abs();
// If not out at this point, iterations did not converge
System.out.println("Error: Iterations did not converge,");
System.out.println("residual = " + ans.toString());
iter = -1;
return a;
}
public static boolean FindFirstTwo()
{
BigDecimal guess = aZero;
BigDecimal r0;
BigDecimal r1;
while (true)
{
r0 = Root(guess, 1);
r1 = Root(guess, 2);
if (iter == -1)
{
System.out.println("Error: Unable to find first two superstable orbits");
return false;
}
BigDecimal temp = r0.add(tol1.multiply(new BigDecimal ("2")));
if (temp.compareTo(r1) < 0)
{
System.out.println("1\t\t" + r0.doubleValue() + "\t\t\tN/A");
System.out.println("2\t" + r1.doubleValue() + "\t\tN/A");
r[0] = r0;
r[1] = r1;
return true;
}
guess = guess.add(step);
}
}
public static void FindRoots(int n)
{
int n1 = 4;
BigDecimal delta = new BigDecimal(4.0);
BigDecimal guess;
for (int i = 2; i < n; i++)
{
// Computation
BigDecimal temp = (r[i-1].subtract(r[i-2])).divide(delta, MathContext.DECIMAL64);
guess = r[i-1].add(temp);
r[i] = Root(guess, n1);
BigDecimal temp2 = r[i-1].subtract(r[i-2]);
BigDecimal temp3 = r[i].subtract(r[i-1]);
delta = temp2.divide(temp3, MathContext.DECIMAL64);
// Output
System.out.println(n1 + "\t" + r[i].doubleValue() + "\t" + delta.doubleValue());
// Step to next superstable orbit
n1 = n1 * 2;
}
}
}
编辑: Phil Steitz的答案基本上解决了我的问题。我查看了一些线程转储,在做了一些研究以尝试理解它们,并用调试信息编译我的程序后,我发现主线程停在了这一行:
dval = Dfda(fval).add(Dfdx(a, fval).multiply(dval));
正如Phil Steit所说,使用
MathContext.DECIMAL128
不仅仅是这一行:
dval = Dfda(fval).add(Dfdx(a, fval).multiply(dval));
但是在F,Dfda和Dfdx方法的乘法运算中,我能够让我的代码正常工作。
我使用了DECIMAL128,因为较小的精度使得计算无法正常运行,因为我将它们与公差检查的这么低的数字进行比较。
答案 0 :(得分:2)
我认为这里发生的事情是,当n大于10时,您的NewtonStep
方法变得非常慢,因为您的multiply
调用都没有通过提供MathContext来限制比例。当没有提供MathContext时,乘法的结果得到被乘数的比例之和。使用上面的代码,NewtonStep中for循环内的dval
和fval
的比例对于大n来说非常大,导致此方法及其调用的方法的乘法非常慢。尝试在乘法激活中指定MathContext.DECIMAL64(或其他),就像对除法一样。