阅读R中错误形成的csv - 不匹配的引号

时间:2013-04-05 09:33:58

标签: r parsing csv

我有数百个大型CSV文件(尺寸从每行10k行到100k行不等),其中一些格式错误,引号都在引号内,所以它们可能看起来像

ID,Description,x
3434,"abc"def",988
2344,"fred",3484
2345,"fr""ed",3485
2346,"joe,fred",3486

我需要能够干净地将R中的所有这些行解析为CSV。 dput()'和阅读......

txt <- c("ID,Description,x",
    "3434,\"abc\"def\",988",
    "2344,\"fred\",3484", 
    "2345,\"fr\"\"ed\",3485",
    "2346,\"joe,fred\",3486")

read.csv(text=txt[1:4], colClasses='character')
    Error in read.table(file = file, header = header, sep = sep, quote = quote,  : 
      incomplete final line found by readTableHeader on 'text'

如果我们更改引号并且不包含嵌入逗号的最后一行 - 它可以正常运行

read.csv(text=txt[1:4], colClasses='character', quote='')

但是,如果我们更改引号并包含嵌入逗号的最后一行...

read.csv(text=txt[1:5], colClasses='character', quote='')
    Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings,  : 
      line 1 did not have 4 elements

编辑x2:应该说不幸的是,有些描述中有逗号 - 代码在上面进行了编辑。

3 个答案:

答案 0 :(得分:5)

更改quote设置:

read.csv(text=txt, colClasses='character',quote = "")

    ID Description    x
1 3434   "abc"def"  988
2 2344      "fred" 3484
3 2345    "fr""ed" 3485
4 2346       "joe" 3486

编辑以处理错误的逗号:

  txt <- c("ID,Description,x",
         "3434,\"abc\"def\",988",
         "2344,\"fred\",3484", 
         "2345,\"fr\"\"ed\",3485",
         "2346,\"joe,fred\",3486")

txt2 <- readLines(textConnection(txt)) 

txt2 <- strsplit(txt2,",")

txt2 <- lapply(txt2,function(x) c(x[1],paste(x[2:(length(x)-1)],collapse=","),x[length(x)]) )
m <- do.call("rbind",txt2)
df <- as.data.frame(m,stringsAsFactors = FALSE)
names(df) <- df[1,]
df <- df[-1,]

#     ID Description    x
# 2 3434   "abc"def"  988
# 3 2344      "fred" 3484
# 4 2345    "fr""ed" 3485
# 5 2346  "joe,fred" 3486

不知道,如果这对您的用例来说足够有效。

答案 1 :(得分:2)

由于这组令人讨厌的文件中只有一个引用列,我可以在每一侧执行read.csv()来处理引用列左右两侧的其他未加引号的列,因此我当前的解决方案基于来自@agstudy和@roland

的信息
csv.parser <- function(txt) {
    df <- do.call('rbind', regmatches(txt,gregexpr(',"|",',txt),invert=TRUE))
    # remove the header
    df <- df[-1,]
    # parse the left csv
    df1 <- read.csv(text=df[,1], colClasses='character', comment='', header=FALSE)
    # parse the right csv
    df3 <- read.csv(text=df[,3], colClasses='character', comment='', header=FALSE)
    # put them back together
    dfa <- cbind(df1, df[,2], df3)
    # put the header back in
    names(dfa) <- names(read.csv(text=txt[1], header=TRUE))
    dfa
}

# debug(csv.parser)
csv.parser(txt)

所以,幸运的是,在更广泛的数据集上运行它。

txt <- c("ID,Description,x,y",
         "3434,\"abc\"def\",988,344",
         "2344,\"fred\",3484,3434", 
         "2345,\"fr\"\"ed\",3485,7347",
         "2346,\"joe,fred\",3486,484")
csv.parser(txt)
    ID Description    x    y
1 3434     abc"def  988  344
2 2344        fred 3484 3434
3 2345      fr""ed 3485 7347
4 2346    joe,fred 3486  484

答案 2 :(得分:1)

您可以使用readLines并在regmatches,"之间使用",提取元素

ll <- readLines(textConnection(object='ID,Description,x
  3434,"abc"def",988
2344,"fred",3484
2345,"fr""ed",3485
2346,"joe,fred",3486'))
ll<- ll[-1]     ## remove the header
ll <- regmatches(ll,gregexpr(',"|",',ll),invert=TRUE)
do.call(rbind,ll)
       [,1]     [,2]       [,3]  
[1,] "  3434" "abc\"def" "988" 
[2,] "2344"   "fred"     "3484"
[3,] "2345"   "fr\"\"ed" "3485"
[4,] "2346"   "joe,fred" "3486"