我有一个像这样的数组a
:
a = [[40, 10], [50, 11]]
我需要分别计算每个维度的平均值,结果应为:
[45, 10.5]
45
是a[*][0]
的平均值10.5
和a[*][1]
的平均值。
在不使用循环的情况下解决此问题的最优雅方法是什么?
答案 0 :(得分:92)
a.mean()
采用axis
参数:
In [1]: import numpy as np
In [2]: a = np.array([[40, 10], [50, 11]])
In [3]: a.mean(axis=1) # to take the mean of each row
Out[3]: array([ 25. , 30.5])
In [4]: a.mean(axis=0) # to take the mean of each col
Out[4]: array([ 45. , 10.5])
或者,作为一个独立的功能:
In [5]: np.mean(a, axis=1)
Out[5]: array([ 25. , 30.5])
切片不起作用的原因是因为这是切片的语法:
In [6]: a[:,0].mean() # first column
Out[6]: 45.0
In [7]: a[:,1].mean() # second column
Out[7]: 10.5
答案 1 :(得分:8)
这是一个非笨拙的解决方案:
>>> a = [[40, 10], [50, 11]]
>>> [float(sum(l))/len(l) for l in zip(*a)]
[45.0, 10.5]
答案 2 :(得分:4)
如果你这么做,NumPy就是你要走的路。
如果由于某种原因你不能使用NumPy:
>>> map(lambda x:sum(x)/float(len(x)), zip(*a))
[45.0, 10.5]