有没有一种标准的方法来存储python中的XY数据?

时间:2013-04-04 15:55:53

标签: python numpy standards

是否有标准方法在python中存储(x,y),(x,y,z)或(x,y,z,t)数据?

我知道numpy数组经常用于这样的事情,但我想你也可以用numpy矩阵来做。

我已经看到使用2个列表压缩在一起,哪一方完全使用numpy。

XY_data = zip( [x for x in range(0,10)] , [y for y in range(0,10)] )

是否有标准?如果没有,您最喜欢的方式是什么?或者您最常见的方式是什么?

1 个答案:

答案 0 :(得分:7)

一个很好的方法是使用structured array。这提供了numpy数组的所有优点,但是方便的访问结构。

要使你的numpy数组成为“结构化”数组,你需要做的就是给它dtype参数。这为每个“字段”提供了名称和类型。如果您愿意,它们甚至可以具有更复杂的形状和层次结构,但这是我保留x-y数据的方式:

In [175]: import numpy as np

In [176]: x = np.random.random(10)

In [177]: y = np.random.random(10)

In [179]: zip(x,y)
Out[179]: 
[(0.27432965895978034, 0.034808254176554643),
 (0.10231729328413885, 0.3311112896885462),
 (0.87724361175443311, 0.47852682944121905),
 (0.24291769332378499, 0.50691735432715967),
 (0.47583427680221879, 0.04048957803763753),
 (0.70710641602121627, 0.27331443495117813),
 (0.85878694702522784, 0.61993945461613498),
 (0.28840423235739054, 0.11954319357707233),
 (0.22084849730366296, 0.39880927226467255),
 (0.42915612628398903, 0.19197320645915561)]

In [180]: data = np.array( zip(x,y), dtype=[('x',float),('y',float)])

In [181]: data['x']
Out[181]: 
array([ 0.27432966,  0.10231729,  0.87724361,  0.24291769,  0.47583428,
        0.70710642,  0.85878695,  0.28840423,  0.2208485 ,  0.42915613])

In [182]: data['y']
Out[182]: 
array([ 0.03480825,  0.33111129,  0.47852683,  0.50691735,  0.04048958,
        0.27331443,  0.61993945,  0.11954319,  0.39880927,  0.19197321])

In [183]: data[0]
Out[183]: (0.27432965895978034, 0.03480825417655464)

其他人可能建议使用pandas,但如果您的数据相对简单,那么简单的numpy可能会更容易。

如果您愿意,可以添加层次结构,但通常情况下会比必要时更复杂。

例如:

In [200]: t = np.arange(10)

In [202]: dt = np.dtype([('t',int),('pos',[('x',float),('y',float)])])

In [203]: alldata = np.array(zip(t, zip(x,y)), dtype=dt)

In [204]: alldata
Out[204]: 
array([(0, (0.27432965895978034, 0.03480825417655464)),
       (1, (0.10231729328413885, 0.3311112896885462)),
       (2, (0.8772436117544331, 0.47852682944121905)),
       (3, (0.242917693323785, 0.5069173543271597)),
       (4, (0.4758342768022188, 0.04048957803763753)),
       (5, (0.7071064160212163, 0.27331443495117813)),
       (6, (0.8587869470252278, 0.619939454616135)),
       (7, (0.28840423235739054, 0.11954319357707233)),
       (8, (0.22084849730366296, 0.39880927226467255)),
       (9, (0.429156126283989, 0.1919732064591556))], 
      dtype=[('t', '<i8'), ('pos', [('x', '<f8'), ('y', '<f8')])])

In [205]: alldata['t']
Out[205]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [206]: alldata['pos']
Out[206]: 
array([(0.27432965895978034, 0.03480825417655464),
       (0.10231729328413885, 0.3311112896885462),
       (0.8772436117544331, 0.47852682944121905),
       (0.242917693323785, 0.5069173543271597),
       (0.4758342768022188, 0.04048957803763753),
       (0.7071064160212163, 0.27331443495117813),
       (0.8587869470252278, 0.619939454616135),
       (0.28840423235739054, 0.11954319357707233),
       (0.22084849730366296, 0.39880927226467255),
       (0.429156126283989, 0.1919732064591556)], 
      dtype=[('x', '<f8'), ('y', '<f8')])

In [207]: alldata['pos']['x']
Out[207]: 
array([ 0.27432966,  0.10231729,  0.87724361,  0.24291769,  0.47583428,
        0.70710642,  0.85878695,  0.28840423,  0.2208485 ,  0.42915613])