问题在于:
用户注册某个站点,可以选择8个作业类别中的一个,或选择跳过此步骤。我想根据电子邮件地址中的域名将已跳过该步骤的用户分类为工作类别。
当前设置:
使用Beautiful Soup和nltk的组合,我抓住主页并查找网站上包含“about”一词的页面的链接。我也抓了那页。我已经复制了在本文末尾进行抓取的代码。
问题:
我没有获得足够的数据来获得良好的学习常规。我想知道我的抓取算法是否设置成功 - 换句话说,我的逻辑中是否有任何漏洞,或者更好的方法来确保我有一大块文本来描述什么样的工作公司呢?
(相关)代码:
import bs4 as bs
import httplib2 as http
import nltk
# Only these characters are valid in a url
ALLOWED_CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-._~:/?#[]@!$&'()*+,;="
class WebPage(object):
def __init__(self, domain):
"""
Constructor
:param domain: URL to look at
:type domain: str
"""
self.url = 'http://www.' + domain
try:
self._get_homepage()
except: # Catch specific here?
self.homepage = None
try:
self._get_about_us()
except:
self.about_us = None
def _get_homepage(self):
"""
Open the home page, looking for redirects
"""
import re
web = http.Http()
response, pg = web.request(self.url)
# Check for redirects:
if int(response.get('content-length',251)) < 250:
new_url = re.findall(r'(https?://\S+)', pg)[0]
if len(new_url): # otherwise there's not much I can do...
self.url = ''.join(x for x in new_url if x in ALLOWED_CHARS)
response, pg = web.request(self.url)
self.homepage = self._parse_html(nltk.clean_html(pg))
self._raw_homepage = pg
def _get_about_us(self):
"""
Soup-ify the home page, find the "About us" page, and store its contents in a
string
"""
soup = bs.BeautifulSoup(self._raw_homepage)
links = [x for x in soup.findAll('a') if x.get('href', None) is not None]
about = [x.get('href') for x in links if 'about' in x.get('href', '').lower()]
# need to find about or about-us
about_us_page = None
for a in about:
bits = a.strip('/').split('/')
if len(bits) == 1:
about_us_page = bits[0]
elif 'about' in bits[-1].lower():
about_us_page = bits[-1]
# otherwise assume shortest string is top-level about pg.
if about_us_page is None and len(about):
about_us_page = min(about, key=len)
self.about_us = None
if about_us_page is not None:
self.about_us_url = self.url + '/' + about_us_page
web = http.Http()
response, pg = web.request(self.about_us_url)
if int(response.get('content-length', 251)) > 250:
self.about_us = self._parse_html(nltk.clean_html(pg))
def _parse_html(self, raw_text):
"""
Clean html coming from a web page. Gets rid of
- all '\n' and '\r' characters
- all zero length words
- all unicode characters that aren't ascii (i.e., &...)
"""
lines = [x.strip() for x in raw_text.splitlines()]
all_text = ' '.join([x for x in lines if len(x)]) # zero length strings
return [x for x in all_text.split(' ') if len(x) and x[0] != '&']
答案 0 :(得分:1)
它超出了您的要求,但我会考虑调用已收集此信息的外部数据源。找到此类服务的好地方是Programmable Web(例如Mergent Company Fundamentals)。并非所有可编程网络上的数据都是最新的,但似乎很多API提供商都在那里。