大家好我正在使用二叉搜索树进行课程项目。我在尝试找到二叉搜索树的第n个节点时遇到了麻烦。我理解使用顺序遍历和使用计数器的概念,但我无法将其放入代码中。如果有人可以提供帮助,将不胜感激。对不起长代码。有问题的方法是nthElement(int n, BinaryNode<AnyType> t)
方法。我不知道如何增加计数器。
package proj2;
// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x
// boolean contains( x ) --> Return true if x is present
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as appropriate
/**
* Implements an unbalanced binary search tree.
* Note that all "matching" is based on the compareTo method.
* @author Mark Allen Weiss
*/
public class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
{
/** The tree root. */
private BinaryNode<AnyType> root;
/** The tree size. */
private int treeSize;
/**
* Construct the tree.
*/
public BinarySearchTree( )
{
root = null;
}
/**
* Insert into the tree; duplicates are ignored.
* @param x the item to insert.
*/
public void insert( AnyType x )
{
root = insert( x, root );
}
/**
* Remove from the tree. Nothing is done if x is not found.
* @param x the item to remove.
*/
public void remove( AnyType x )
{
root = remove( x, root );
}
/**
* Find the smallest item in the tree.
* @return smallest item or null if empty.
*/
public AnyType findMin( )
{
if( isEmpty( ) )
throw new UnderflowException( );
return findMin( root ).element;
}
/**
* Find the largest item in the tree.
* @return the largest item of null if empty.
*/
public AnyType findMax( )
{
if( isEmpty( ) )
throw new UnderflowException( );
return findMax( root ).element;
}
/**
* Find an item in the tree.
* @param x the item to search for.
* @return true if not found.
*/
public boolean contains( AnyType x )
{
return contains( x, root );
}
/**
* Count the number of nodes in the tree.
* @return the tree size.
*/
public int treeSize(){
treeSize = treeSize(root);
return treeSize;
}
/**
* Make the tree logically empty.
*/
public void makeEmpty( )
{
root = null;
}
/**
* Test if the tree is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty( )
{
return root == null;
}
/**
* Print the tree contents in sorted order.
*/
public void printTree( )
{
if( isEmpty( ) )
System.out.println( "Empty tree" );
else
printTree( root );
}
public BinaryNode<AnyType> nthElement(int n){
return nthElement(n, root);
}
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t )
{
if( t == null )
return new BinaryNode<AnyType>( x, null, null );
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = insert( x, t.left );
else if( compareResult > 0 )
t.right = insert( x, t.right );
else
; // Duplicate; do nothing
return t;
}
/**
* Internal method to remove from a subtree.
* @param x the item to remove.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private BinaryNode<AnyType> remove( AnyType x, BinaryNode<AnyType> t )
{
if( t == null )
return t; // Item not found; do nothing
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
t.left = remove( x, t.left );
else if( compareResult > 0 )
t.right = remove( x, t.right );
else if( t.left != null && t.right != null ) // Two children
{
t.element = findMin( t.right ).element;
t.right = remove( t.element, t.right );
}
else
t = ( t.left != null ) ? t.left : t.right;
return t;
}
/**
* Internal method to find the smallest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the smallest item.
*/
private BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
{
if( t == null )
return null;
else if( t.left == null )
return t;
return findMin( t.left );
}
/**
* Internal method to find the largest item in a subtree.
* @param t the node that roots the subtree.
* @return node containing the largest item.
*/
private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
{
if( t != null )
while( t.right != null )
t = t.right;
return t;
}
/**
* Internal method to find an item in a subtree.
* @param x is item to search for.
* @param t the node that roots the subtree.
* @return node containing the matched item.
*/
private boolean contains( AnyType x, BinaryNode<AnyType> t )
{
if( t == null )
return false;
int compareResult = x.compareTo( t.element );
if( compareResult < 0 )
return contains( x, t.left );
else if( compareResult > 0 )
return contains( x, t.right );
else
return true; // Match
}
/**
* Internal method to print a subtree in sorted order.
* @param t the node that roots the subtree.
*/
private void printTree( BinaryNode<AnyType> t )
{
if( t != null )
{
printTree( t.left );
System.out.println( t.element );
printTree( t.right );
}
}
/**
* Internal method for traversing the tree in-order.
* @param t the node that roots the subtree.
* @return
*/
private void nthElement(int n, BinaryNode<AnyType> t){
int i = t.treeSize;
if(t.left.treeSize == n){
System.out.println(t.element);
}else if(t.left.treeSize > n){
nthElement(n, t.left);
}else if(t.left.treeSize < n){
int k = i - t.left.treeSize;
nthElement(k, t.right);
}
}
/**
* Internal method for finding tree size.
* @param t the node that roots the subtree.
* @return the number of nodes.
*/
private int treeSize(BinaryNode<AnyType> t){
int size = 1;
if(t.right != null){
size = size + treeSize(t.right);
}
if(t.left != null){
size = size + treeSize(t.left);
}
return t.treeSize = size;
}
/**
* Internal method to compute height of a subtree.
* @param t the node that roots the subtree.
*/
private int height( BinaryNode<AnyType> t )
{
if( t == null )
return -1;
else
return 1 + Math.max( height( t.left ), height( t.right ) );
}
// Basic node stored in unbalanced binary search trees
private static class BinaryNode<AnyType>
{
// Constructors
BinaryNode( AnyType theElement )
{
this( theElement, null, null );
}
BinaryNode( AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt )
{
element = theElement;
left = lt;
right = rt;
}
AnyType element; // The data in the node
BinaryNode<AnyType> left; // Left child
BinaryNode<AnyType> right; // Right child
}
// Test program
public static void main( String [ ] args )
{
BinarySearchTree<Integer> t = new BinarySearchTree<Integer>( );
final int NUMS = 10;
final int GAP = 1;
System.out.println( "Checking... (no more output means success)" );
t.insert(55);
t.insert(40);
t.insert(35);
t.insert(60);
t.insert(70);
t.insert(80);
System.out.println("this is tree size: " + t.treeSize());
int n = t.root.left.treeSize;
System.out.println(n);
t.nthElement(3);
}
}
编辑:我修改了nthElement(int n, BinaryNode<AnyType> t)
和treeSize(BinaryNode<AnyType t>
方法。现在的问题是,除了2和3之外,我输入的任何数字都是NullPointerException
。
答案 0 :(得分:3)
问题是您需要从递归函数或多个函数返回计数和节点。如果您将其转入,我会以一种让您遇到麻烦的方式来执行此操作:)
Object nthElement(int n, BinaryNode t) { // We are on the correct node, return it. if(n == 1) // I'll make this 1 based, so passing in 1 returns the first element. return t; // Check the left side of the tree. if(t.left != null) { Object o=nthElement(n-1, t.left); // we found the correct node. if(o instanceof BinaryNode) return o; // we didn't find it but let's count the ones we found. (This is the "Trick") n=(Integer)o; } // We have no more children, let's just return our current count. if(t.right == null) return n; // Recurse right return(nthElement(n-1, t.right); }
这是未经过测试的手工编码,我经常在快速未经测试的代码上犯下巨大的逻辑错误,但这个概念是合理的。任何值得他的盐的老师都可能会失败这个答案,因为返回值有两个完全不同的无关类型,我修改了一个参数,但我想给你带来一些乐趣!
如果它是BinaryNode的实例,则必须检查返回值,如果没有树没有足够的节点,则很好。
另外,为了好玩,我认为 - (int)nthElement(0,t)计算树中节点的数量。
A&#34; Real&#34;递归解决方案将返回一个带有BinaryNode和count的新可变对象。当它被传递时你将修改计数,为每个访问的节点减去1,当你点击0时你返回对象并提取它&#34; BinaryNode&#34;
答案 1 :(得分:1)
您最简单(但效率最低)的方法类似于:
// Ignoring the possibility that there may not be n elements in the tree.
int leftSize = treeSize(t.left);
// If the size of the left tree is greater than n then the nth element must be up the left branch.
if ( leftSize >= n ) {
return nthElement(n-1, t.left);
} else {
// Otherwise it must be up the right branch.
return nthElement(n-leftSize, t.right);
}
但是,最好实现Iterator
并且只需要执行n次。
答案 2 :(得分:0)
这对我来说没问题。在保持计数的同时按顺序遍历树。
int c = 0;
public void findNth(int n, IntTree t) {
if(!IntTree.isEmpty(t)) {
findNth(n, t.left);
c++;
if(c==n)
System.out.println("The element on position "+n+" is " + IntTree.value(t));
findNth(n, t.right);
}
答案 3 :(得分:0)
我被解决了这个问题已经两天了。我能够打印第n个到最后一个元素。但难以归还它。最后能够使用以下代码解决:
public class BinarySearchTree {
Node root;
public Node findNth(int n){
if(root == null)
return null;
NodeCounter myNode = new NodeCounter();
findNth(root,n, myNode);
return myNode.node;
}
private void findNth(Node head, int n, NodeCounter nodeObj){
if(head == null)
return;
findNth(head.left, n ,nodeObj);
nodeObj.counter = nodeObj.counter + 1;
if(n == nodeObj.counter){
nodeObj.node = head;
return;
}
if(n > nodeObj.counter)
findNth(head.right,n,nodeObj);
}
}
private class NodeCounter{
Node node;
int counter = 0;
}
class Node{
Node left;
Node right;
int data;
public Node getLeft() {
return left;
}
public Node getRight() {
return right;
}
}