在二叉搜索树中查找第n个节点

时间:2013-03-31 20:04:50

标签: java recursion project binary-search-tree

大家好我正在使用二叉搜索树进行课程项目。我在尝试找到二叉搜索树的第n个节点时遇到了麻烦。我理解使用顺序遍历和使用计数器的概念,但我无法将其放入代码中。如果有人可以提供帮助,将不胜感激。对不起长代码。有问题的方法是nthElement(int n, BinaryNode<AnyType> t)方法。我不知道如何增加计数器。

package proj2;

// BinarySearchTree class
//
// CONSTRUCTION: with no initializer
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x )       --> Insert x
// void remove( x )       --> Remove x
// boolean contains( x )  --> Return true if x is present
// Comparable findMin( )  --> Return smallest item
// Comparable findMax( )  --> Return largest item
// boolean isEmpty( )     --> Return true if empty; else false
// void makeEmpty( )      --> Remove all items
// void printTree( )      --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as appropriate

/**
 * Implements an unbalanced binary search tree.
 * Note that all "matching" is based on the compareTo method.
 * @author Mark Allen Weiss
 */
public class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
{
/** The tree root. */
private BinaryNode<AnyType> root;

/** The tree size. */
private int treeSize;

/**
 * Construct the tree.
 */
public BinarySearchTree( )
{
    root = null;
}

/**
 * Insert into the tree; duplicates are ignored.
 * @param x the item to insert.
 */
public void insert( AnyType x )
{
    root = insert( x, root );
}

/**
 * Remove from the tree. Nothing is done if x is not found.
 * @param x the item to remove.
 */
public void remove( AnyType x )
{
    root = remove( x, root );
}

/**
 * Find the smallest item in the tree.
 * @return smallest item or null if empty.
 */
public AnyType findMin( )
{
    if( isEmpty( ) )
        throw new UnderflowException( );
    return findMin( root ).element;
}

/**
 * Find the largest item in the tree.
 * @return the largest item of null if empty.
 */
public AnyType findMax( )
{
    if( isEmpty( ) )
        throw new UnderflowException( );
    return findMax( root ).element;
}

/**
 * Find an item in the tree.
 * @param x the item to search for.
 * @return true if not found.
 */
public boolean contains( AnyType x )
{
    return contains( x, root );
}

/**
 * Count the number of nodes in the tree.
 * @return the tree size.
 */
public int treeSize(){

    treeSize = treeSize(root);
    return treeSize;

}

/**
 * Make the tree logically empty.
 */
public void makeEmpty( )
{
    root = null;
}

/**
 * Test if the tree is logically empty.
 * @return true if empty, false otherwise.
 */
public boolean isEmpty( )
{
    return root == null;
}

/**
 * Print the tree contents in sorted order.
 */
public void printTree( )
{
    if( isEmpty( ) )
        System.out.println( "Empty tree" );
    else
        printTree( root );
}

public BinaryNode<AnyType> nthElement(int n){

    return nthElement(n, root);

}

/**
 * Internal method to insert into a subtree.
 * @param x the item to insert.
 * @param t the node that roots the subtree.
 * @return the new root of the subtree.
 */
private BinaryNode<AnyType> insert( AnyType x, BinaryNode<AnyType> t )
{
    if( t == null )
        return new BinaryNode<AnyType>( x, null, null );

    int compareResult = x.compareTo( t.element );

    if( compareResult < 0 )
        t.left = insert( x, t.left );
    else if( compareResult > 0 )
        t.right = insert( x, t.right );
    else
        ;  // Duplicate; do nothing
    return t;
}

/**
 * Internal method to remove from a subtree.
 * @param x the item to remove.
 * @param t the node that roots the subtree.
 * @return the new root of the subtree.
 */
private BinaryNode<AnyType> remove( AnyType x, BinaryNode<AnyType> t )
{
    if( t == null )
        return t;   // Item not found; do nothing

    int compareResult = x.compareTo( t.element );

    if( compareResult < 0 )
        t.left = remove( x, t.left );
    else if( compareResult > 0 )
        t.right = remove( x, t.right );
    else if( t.left != null && t.right != null ) // Two children
    {
        t.element = findMin( t.right ).element;
        t.right = remove( t.element, t.right );
    }
    else
        t = ( t.left != null ) ? t.left : t.right;
    return t;
}

/**
 * Internal method to find the smallest item in a subtree.
 * @param t the node that roots the subtree.
 * @return node containing the smallest item.
 */
private BinaryNode<AnyType> findMin( BinaryNode<AnyType> t )
{
    if( t == null )
        return null;
    else if( t.left == null )
        return t;
    return findMin( t.left );
}

/**
 * Internal method to find the largest item in a subtree.
 * @param t the node that roots the subtree.
 * @return node containing the largest item.
 */
private BinaryNode<AnyType> findMax( BinaryNode<AnyType> t )
{
    if( t != null )
        while( t.right != null )
            t = t.right;

    return t;
}

/**
 * Internal method to find an item in a subtree.
 * @param x is item to search for.
 * @param t the node that roots the subtree.
 * @return node containing the matched item.
 */
private boolean contains( AnyType x, BinaryNode<AnyType> t )
{
    if( t == null )
        return false;

    int compareResult = x.compareTo( t.element );

    if( compareResult < 0 )
        return contains( x, t.left );
    else if( compareResult > 0 )
        return contains( x, t.right );
    else
        return true;    // Match
}

/**
 * Internal method to print a subtree in sorted order.
 * @param t the node that roots the subtree.
 */
private void printTree( BinaryNode<AnyType> t )
{
    if( t != null )
    {
        printTree( t.left );
        System.out.println( t.element );
        printTree( t.right ); 
    }
}

/**
 * Internal method for traversing the tree in-order.
 * @param t the node that roots the subtree.
 * @return 
 */
  private void nthElement(int n, BinaryNode<AnyType> t){

    int i = t.treeSize;
    if(t.left.treeSize == n){
        System.out.println(t.element);
    }else if(t.left.treeSize > n){
        nthElement(n, t.left);
    }else if(t.left.treeSize < n){
        int k = i - t.left.treeSize;
        nthElement(k, t.right);
    }
}

/** 
 * Internal method for finding tree size.
 * @param t the node that roots the subtree.
 * @return the number of nodes.
 */
private int treeSize(BinaryNode<AnyType> t){

    int size = 1;                                      
    if(t.right != null){
        size = size + treeSize(t.right);        
    }
    if(t.left != null){
        size = size + treeSize(t.left);          
    }
    return t.treeSize = size;
} 

/**
 * Internal method to compute height of a subtree.
 * @param t the node that roots the subtree.
 */
private int height( BinaryNode<AnyType> t )
{
    if( t == null )
        return -1;
    else
        return 1 + Math.max( height( t.left ), height( t.right ) );    
}

// Basic node stored in unbalanced binary search trees
private static class BinaryNode<AnyType>
{
        // Constructors
    BinaryNode( AnyType theElement )
    {
        this( theElement, null, null );
    }

    BinaryNode( AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt )
    {
        element  = theElement;
        left     = lt;
        right    = rt;
    }

    AnyType element;            // The data in the node
    BinaryNode<AnyType> left;   // Left child
    BinaryNode<AnyType> right;  // Right child
}

    // Test program
public static void main( String [ ] args )
{
    BinarySearchTree<Integer> t = new BinarySearchTree<Integer>( );
    final int NUMS = 10;
    final int GAP  = 1;

    System.out.println( "Checking... (no more output means success)" );

    t.insert(55);
    t.insert(40);
    t.insert(35);
    t.insert(60);
    t.insert(70);
    t.insert(80);

    System.out.println("this is tree size: " + t.treeSize());
    int n = t.root.left.treeSize;
    System.out.println(n);
    t.nthElement(3);

}
}

编辑:我修改了nthElement(int n, BinaryNode<AnyType> t)treeSize(BinaryNode<AnyType t>方法。现在的问题是,除了2和3之外,我输入的任何数字都是NullPointerException

4 个答案:

答案 0 :(得分:3)

问题是您需要从递归函数或多个函数返回计数和节点。如果您将其转入,我会以一种让您遇到麻烦的方式来执行此操作:)

Object nthElement(int n, BinaryNode t)
{
    // We are on the correct node, return it.
    if(n == 1) // I'll make this 1 based, so passing in 1 returns the first element. 
         return t;

    // Check the left side of the tree.
    if(t.left != null) {
        Object o=nthElement(n-1, t.left);
        // we found the correct node.
        if(o instanceof BinaryNode)
            return o;
        // we didn't find it but let's count the ones we found. (This is the "Trick")
        n=(Integer)o;
    }
    // We have no more children, let's just return our current count.
    if(t.right == null)
        return n;

    // Recurse right
    return(nthElement(n-1, t.right);
}

这是未经过测试的手工编码,我经常在快速未经测试的代码上犯下巨大的逻辑错误,但这个概念是合理的。任何值得他的盐的老师都可能会失败这个答案,因为返回值有两个完全不同的无关类型,我修改了一个参数,但我想给你带来一些乐趣!

如果它是BinaryNode的实例,则必须检查返回值,如果没有树没有足够的节点,则很好。

另外,为了好玩,我认为 - (int)nthElement(0,t)计算树中节点的数量。

A&#34; Real&#34;递归解决方案将返回一个带有BinaryNode和count的新可变对象。当它被传递时你将修改计数,为每个访问的节点减去1,当你点击0时你返回对象并提取它&#34; BinaryNode&#34;

答案 1 :(得分:1)

您最简单(但效率最低)的方法类似于:

// Ignoring the possibility that there may not be n elements in the tree.
int leftSize = treeSize(t.left);
// If the size of the left tree is greater than n then the nth element must be up the left branch.
if ( leftSize >= n ) {
  return nthElement(n-1, t.left);
} else {
  // Otherwise it must be up the right branch.
  return nthElement(n-leftSize, t.right);
}

但是,最好实现Iterator并且只需要执行n次。

答案 2 :(得分:0)

这对我来说没问题。在保持计数的同时按顺序遍历树。

    int c = 0;
    public void findNth(int n, IntTree t) {

    if(!IntTree.isEmpty(t)) {
        findNth(n, t.left);
        c++;
        if(c==n)
            System.out.println("The element on position "+n+" is " + IntTree.value(t));
        findNth(n, t.right);

    }

答案 3 :(得分:0)

我被解决了这个问题已经两天了。我能够打印第n个到最后一个元素。但难以归还它。最后能够使用以下代码解决:

    public class BinarySearchTree {

    Node root;

    public Node findNth(int n){
        if(root == null)
            return null;

        NodeCounter myNode = new NodeCounter();

        findNth(root,n, myNode);
        return myNode.node;
    }


    private void findNth(Node head, int n, NodeCounter nodeObj){

        if(head == null)
            return;

        findNth(head.left, n ,nodeObj);
        nodeObj.counter = nodeObj.counter + 1;
        if(n == nodeObj.counter){
            nodeObj.node = head;
            return;
        }
        if(n > nodeObj.counter)
            findNth(head.right,n,nodeObj);

    }

}

private class NodeCounter{
        Node node;
        int counter = 0;
}
class Node{
    Node left;
    Node right;
    int data;

    public Node getLeft() {
        return left;
    }

    public Node getRight() {
        return right;
    }

}