我正在尝试生成一个完整的(即,每个单元格中填充一个数字)类似Sudoku的板。这是与sudokus无关的其他东西,所以我对达到可以解决的白色方块或与sudokus有关的任何东西都不感兴趣。不知道你是否知道我的意思。
我在java中完成了这个:
private int sudokuNumberSelector(int x, int y, int[][] sudoku) {
boolean valid = true;
String validNumbers = new String();
int[] aValidNumbers;
int squarexstart = 0;
int squareystart = 0;
int b = 0; // For random numbers
Random randnum = new Random();
randnum.setSeed(new Date().getTime());
// Check numbers one by one
for(int n = 1; n < 10; n++) {
valid = true;
// Check column
for(int i = 0; i < 9; i++) {
if(sudoku[i][y] == n) {
valid = false;
}
}
// Check file
for(int j = 0; j < 9; j++) {
if(sudoku[x][j] == n) {
valid = false;
}
}
// Check square
switch (x) {
case 0: case 1: case 2: squarexstart = 0; break;
case 3: case 4: case 5: squarexstart = 3; break;
case 6: case 7: case 8: squarexstart = 6; break;
}
switch (y) {
case 0: case 1: case 2: squareystart = 0; break;
case 3: case 4: case 5: squareystart = 3; break;
case 6: case 7: case 8: squareystart = 6; break;
}
for(int i = squarexstart; i < (squarexstart + 3); i++ ) {
for(int j = squareystart; j < (squareystart + 3); j++ ) {
if(sudoku[i][j] == n) {
valid = false;
}
}
}
// If the number is valid, add it to the String
if(valid) {
validNumbers += n;
}
}
if(validNumbers.length() != 0) {
// String to int[]
aValidNumbers = fromPuzzleString(validNumbers);
// By this random number, return the valid number in its position
Log.d(TAG, "NUMBERS: " + validNumbers.length());
// Select a random number from the int[]
b = randnum.nextInt((aValidNumbers.length));
return aValidNumbers[b];
} else {
return 0;
}
}
从这段代码中调用此方法:
int[][] sudoku = new int[9][9];
for(int i = 0; i < 9; i++) {
for(int j = 0; j < 9; j++) {
sudoku[i][j] = sudokuNumberSelector(i, j, sudoku);
}
}
但它并不像看起来那么容易!当算法生成了像这样的板的一部分时,循环在单元格上以粗体显示:
|||164527389|||
|||983416257|||
|||257938416|||
|||719352648|||
|||3256791**0**0|||
|||000000000|||
|||000000000|||
|||000000000|||
|||000000000|||
此单元格中没有数字,因为根据数独规则的所有数字已经在列,行或方格上!
这对我来说是一场噩梦。这有什么办法可以解决这个问题吗?如果没有,我想我必须重做一切,好像我正在进行数独游戏。
提前致谢。
答案 0 :(得分:6)
问题在于,在大多数情况下,无法使用随机数生成完整的电路板,在不可能使用下一个电池的情况下,必须使用回溯。 我曾经写过一个数独游戏,所以这是生成填充板的代码片段。
这是Cell类。
public class SudokuCell implements Serializable {
private int value;
private boolean filled;
private HashSet<Integer> tried;
public SudokuCell() {
filled = false;
tried = new HashSet();
}
public boolean isFilled() {
return filled;
}
public int get() {
return value;
}
public void set(final int number) {
filled = true;
value = number;
tried.add(number);
}
public void clear() {
value = 0;
filled = false;
}
public void reset() {
clear();
tried.clear();
}
public void show() {
filled = true;
}
public void hide() {
filled = false;
}
public boolean isTried(final int number) {
return tried.contains(number);
}
public void tryNumber(final int number) {
tried.add(number);
}
public int numberOfTried() {
return tried.size();
}
}
这是Field类(将所有数据保存在一个对象中非常方便。)
public class SudokuField implements Serializable {
private final int blockSize;
private final int fieldSize;
private SudokuCell[][] field;
public SudokuField(final int blocks) {
blockSize = blocks;
fieldSize = blockSize * blockSize;
field = new SudokuCell[fieldSize][fieldSize];
for (int i = 0; i < fieldSize; ++i) {
for (int j = 0; j < fieldSize; ++j) {
field[i][j] = new SudokuCell();
}
}
}
public int blockSize() {
return blockSize;
}
public int fieldSize() {
return fieldSize;
}
public int variantsPerCell() {
return fieldSize;
}
public int numberOfCells() {
return fieldSize * fieldSize;
}
public void clear(final int row, final int column) {
field[row - 1][column - 1].clear();
}
public void clearAllCells() {
for (int i = 0; i < fieldSize; ++i) {
for (int j = 0; j < fieldSize; ++j) {
field[i][j].clear();
}
}
}
public void reset(final int row, final int column) {
field[row - 1][column - 1].reset();
}
public void resetAllCells() {
for (int i = 0; i < fieldSize; ++i) {
for (int j = 0; j < fieldSize; ++j) {
field[i][j].reset();
}
}
}
public boolean isFilled(final int row, final int column) {
return field[row - 1][column - 1].isFilled();
}
public boolean allCellsFilled() {
for (int i = 0; i < fieldSize; ++i) {
for (int j = 0; j < fieldSize; ++j) {
if (!field[i][j].isFilled()) {
return false;
}
}
}
return true;
}
public int numberOfFilledCells() {
int filled = 0;
for (int i = 1; i <= fieldSize; ++i) {
for (int j = 1; j <= fieldSize; ++j) {
if (isFilled(i, j)) {
++filled;
}
}
}
return filled;
}
public int numberOfHiddenCells() {
return numberOfCells() - numberOfFilledCells();
}
public int get(final int row, final int column) {
return field[row - 1][column - 1].get();
}
public void set(final int number, final int row, final int column) {
field[row - 1][column - 1].set(number);
}
public void hide(final int row, final int column) {
field[row - 1][column - 1].hide();
}
public void show(final int row, final int column) {
field[row - 1][column - 1].show();
}
public void tryNumber(final int number, final int row, final int column) {
field[row - 1][column - 1].tryNumber(number);
}
public boolean numberHasBeenTried(final int number, final int row, final int column) {
return field[row - 1][column - 1].isTried(number);
}
public int numberOfTriedNumbers(final int row, final int column) {
return field[row - 1][column - 1].numberOfTried();
}
public boolean checkNumberBox(final int number, final int row, final int column) {
int r = row, c = column;
if (r % blockSize == 0) {
r -= blockSize - 1;
} else {
r = (r / blockSize) * blockSize + 1;
}
if (c % blockSize == 0) {
c -= blockSize - 1;
} else {
c = (c / blockSize) * blockSize + 1;
}
for (int i = r; i < r + blockSize; ++i) {
for (int j = c; j < c + blockSize; ++j) {
if (field[i - 1][j - 1].isFilled() && (field[i - 1][j - 1].get() == number)) {
return false;
}
}
}
return true;
}
public boolean checkNumberRow(final int number, final int row) {
for (int i = 0; i < fieldSize; ++i) {
if (field[row - 1][i].isFilled() && field[row - 1][i].get() == number) {
return false;
}
}
return true;
}
public boolean checkNumberColumn(final int number, final int column) {
for (int i = 0; i < fieldSize; ++i) {
if (field[i][column - 1].isFilled() && field[i][column - 1].get() == number) {
return false;
}
}
return true;
}
public boolean checkNumberField(final int number, final int row, final int column) {
return (checkNumberBox(number, row, column)
&& checkNumberRow(number, row)
&& checkNumberColumn(number, column));
}
public int numberOfPossibleVariants(final int row, final int column) {
int result = 0;
for (int i = 1; i <= fieldSize; ++i) {
if (checkNumberField(i, row, column)) {
++result;
}
}
return result;
}
public boolean isCorrect() {
for (int i = 0; i < fieldSize; ++i) {
for (int j = 0; j < fieldSize; ++j) {
if (field[i][j].isFilled()) {
int value = field[i][j].get();
field[i][j].hide();
boolean correct = checkNumberField(value, i + 1, j + 1);
field[i][j].show();
if (!correct) {
return false;
}
}
}
}
return true;
}
public Index nextCell(final int row, final int column) {
int r = row, c = column;
if (c < fieldSize) {
++c;
} else {
c = 1;
++r;
}
return new Index(r, c);
}
public Index cellWithMinVariants() {
int r = 1, c = 1, min = 9;
for (int i = 1; i <= fieldSize; ++i) {
for (int j = 1; j <= fieldSize; ++j) {
if (!field[i - 1][j - 1].isFilled()) {
if (numberOfPossibleVariants(i, j) < min) {
min = numberOfPossibleVariants(i, j);
r = i;
c = j;
}
}
}
}
return new Index(r, c);
}
public int getRandomIndex() {
return (int) (Math.random() * 10) % fieldSize + 1;
}
}
最后填充游戏板的功能
private void generateFullField(final int row, final int column) {
if (!field.isFilled(field.fieldSize(), field.fieldSize())) {
while (field.numberOfTriedNumbers(row, column) < field.variantsPerCell()) {
int candidate = 0;
do {
candidate = field.getRandomIndex();
} while (field.numberHasBeenTried(candidate, row, column));
if (field.checkNumberField(candidate, row, column)) {
field.set(candidate, row, column);
Index nextCell = field.nextCell(row, column);
if (nextCell.i <= field.fieldSize()
&& nextCell.j <= field.fieldSize()) {
generateFullField(nextCell.i, nextCell.j);
}
} else {
field.tryNumber(candidate, row, column);
}
}
if (!field.isFilled(field.fieldSize(), field.fieldSize())) {
field.reset(row, column);
}
}
}
重点是您在继续之前保存已经为每个单元格尝试过的数字。如果你必须到死胡同,你只需要为前一个单元格尝试另一个数字。如果没有可能,擦除该单元格并退回一个单元格。迟早你会完成它。 (它会花费很少的时间)。
答案 1 :(得分:3)
从解决的 Sudoko 开始,如下所示:
ABC DEF GHI
329 657 841 A
745 831 296 B
618 249 375 C
193 468 527 D
276 195 483 E
854 372 619 F
432 716 958 G
587 923 164 H
961 584 732 I
然后通过切换列和切换行来置换它。如果你只在以下组ABC,DEF,GHI中切换,数独仍然可以解决。
排列版本(切换列):
BCA DFE IGH
293 675 184 A
457 813 629 B
186 294 537 C
931 486 752 D
762 159 348 E
548 327 961 F
324 761 895 G
875 932 416 H
619 548 273 I
经过更多排列(切换行)之后:
BCA DFE IGH
293 675 184 A
186 294 537 C
457 813 629 B
931 486 752 D
548 327 961 F
762 159 348 E
875 932 416 H
619 548 273 I
324 761 895 G
答案 2 :(得分:2)
您的问题是您正在使用字符串。尝试使用整数的递归算法。该算法对任何大小的数独都有用。虽然在每次通话中选择随机数确实有效,但它需要更长的时间。如果您选择一组随机数,如果下一个单元格不起作用,那么您将不再使用相同的数字。该算法每次都会创建一个独特的谜题。
public class Sudoku {
//box size, and game SIZE ==> e.g. size = 3, SIZE = 9
//game will be the game
private int size, SIZE;
private int[][] game;
public Sudoku(int _size) {
size = _size;
SIZE = size*size;
game = generateGame();
}
//This will return the game
private int[][] generateGame() {
//Set everything to -1 so that it cannot be a value
int[][] g = new int[SIZE][SIZE];
for(int i = 0; i < SIZE; i++)
for(int j = 0; j < SIZE; j++)
g[i][j] = -1;
if(createGame(0, 0, g))
return g;
return null;
}
//Create the game
private boolean createGame(int x, int y, int[][] g) {
//An array of integers
Rand r = new Rand(SIZE);
//for every random num in r
for(int NUM = 0; NUM < size; NUM++) {
int num = r.get(NUM);
//if num is valid
if(isValid(x, y, g, num)) {
//next cell coordinates
int nx = (x+1)%SIZE, ny = y;
if(nx == 0) ny++;
//set this cell to num
g[x][y] = num;
//if the next cell is valid return true
if(createGame(nx, ny, g)) return true;
//otherwise return false
g[x][y] = -1;
return false;
}
}
return false;
}
private boolean isValid(int x, int y, int[][] g, int num) {
//Rows&&Cols
for(int i = 0; i < SIZE; i++)
if(g[i][y] == num || g[x][i] == num) return false;
//Box
int bx = x - x%size;, by = y - y%size;
for(int i = bx; i < bx + size; i++) {
for(int j = by; j < by + size; j++) {
if(g[i][j] == num)return false;
}
}
return true;
}
}
public class Rand {
private int rSize;
private int[] r;
public Rand(int _size) {
rSize = _size;
r = new int[size];
for(int i = 0; i < rSize; r++)r[i] = i;
for(int i = 0; i < rSize*5; r++) {
int a = (int)(Math.random()*rSize);
int b = (int)(Math.random()*rSize);
int n = r[a];
r[a] = r[b];
r[b] = n;
}
public void get(int i) {
if(i >= 0 && i < rSize) return r[i]; return -1;
}
}
答案 3 :(得分:1)
您将不得不实施backtracking算法。
您可能必须使用递归函数,以便可以回溯。
答案 4 :(得分:1)
你至少有几种方法可以做到这一点,但通常你需要重复/回溯。拥有求解器也是很棒的,只是为了检查部分填充的拼图是否有解决方案(以及唯一的 - 用于停止标准 - 如果你想要真正的数独)。
在执行回溯/重复时,您需要:
随机选择可用的空单元格(您可以通过测量给定单元格上仍然空闲的数字格式来优化此步骤,然后进行排序)
随机选择该单元格中的可用数字
您填写单元格并检查解决方案是否存在,如果是,请更进一步,如果没有 - 执行后退步骤。
起点: - 从完全空的拼图开始 - 从部分填充的拼图开始 - 从解决拼图开始(有很多变换不会改变解决方案的存在,但会使拼图变得不同 - 即:反射,旋转,换位,段交换,列/行在段内交换,排列等)
我最近使用的是Janet Sudoku库,它提供了解算器,生成器和拼图转换方法。
请参阅GitHub上提供的以下源代码
图书馆的使用非常简单,即:
SudokuGenerator g = new SudokuGenerator();
int[][] puzzle = g.generate();
SudokuSolver s = new SudokuSolver(puzzle);
s.solve();
int[][] solvedPuzzle = s.getSolvedBoard();
致以最诚挚的问候,
答案 5 :(得分:0)
只需生成1到9之间的一些随机数并看到它适合给定的单元格[i] [j]它每次都会为您提供一组新的数字,因为每个单元格编号都是根据当前系统时间随机生成的。
public int sudokuNumberSelector(int i, int j, int[][] sudoku) {
while (true) {
int temp = (int) ((System.currentTimeMillis()) % 9) + 1;//Just getting some random number
while (temp < 10) {
boolean setRow = false, setColomn = false, setBlock = false;
for (int a = 0; a < 9; a++) {
if (sudoku[a][j] == temp) {
setRow = true;
break;
}
}
for (int a = 0; a < 9; a++) {
if (sudoku[i][a] == temp) {
setColomn = true;
break;
}
}
for (int a = i - (i % 3); a < i - (i % 3)+ 3; a++) {
for (int b = j - (j % 3); b < j - (j % 3)+3; b++) {
if (sudoku[a][b] == temp) {
setBlock = true;
a = 3;
b = 3;
}
}
}
if(setRow | setColomn | setBlock == false){
return temp;
}
temp++;
}
}
}