我想我已经遇到了大熊猫的一个错误。我希望得到一些帮助来验证错误或帮助我找出我的逻辑错误在我的代码中的位置。
我的代码如下:
import pandas, numpy, StringIO
def sq_fixer(sr):
sr = sr.where(sr != '20200229')
ranks = sr.argsort().astype(float)
ranks[ranks == -1] = numpy.nan
return ','.join(ranks.astype(numpy.str))
def correct_date(sr):
date_fixer = lambda x: pandas.datetime(x.year -100, x.month, x.day) if x > pandas.datetime.now() else x
sr = pandas.to_datetime(sr).apply(date_fixer).astype(pandas.datetime)
return sr
txt = '''ID,RUN_START_DATE,PUSHUP_START_DATE,SITUP_START_DATE,PULLUP_START_DATE
1,2013-01-24,2013-01-02,,2013-02-03
2,2013-01-30,2013-01-21,2013-01-13,2013-01-06
3,2013-01-29,2013-01-28,2013-01-01,2013-01-29
4,2013-02-16,2013-02-12,2013-01-04,2013-02-11
5,2013-01-06,2013-02-07,2013-02-25,2013-02-12
6,2013-01-26,2013-01-28,2013-02-12,2013-01-10
7,2013-01-26,,2013-01-12,2013-01-30
8,2013-01-03,2013-01-24,2013-01-19,2013-01-02
9,2013-01-22,2013-01-13,2013-02-03,
10,2013-02-06,2013-01-16,2013-02-07,2013-01-11
3347,,2008-02-27,2008-04-10,2008-02-13
3588,2004-09-12,,2004-11-06,2004-09-06
3784,2003-02-22,,2003-06-21,2003-02-19
593,2009-04-03,,2009-06-01,2009-04-01
4148,2003-03-21,2002-09-20,2003-04-01,2003-01-01
4299,2004-05-24,2004-07-23,,2004-04-22
4590,2005-05-05,2005-12-05,2005-04-05,
4830,2001-06-12,2000-10-12,2001-07-28,2001-01-28
4941,2006-11-08,2006-12-19,2006-07-19,2007-02-24
1416,2004-04-03,2004-05-19,2004-02-06,
1580,2008-12-20,,2009-03-19,2008-12-19
1661,2005-10-03,2005-10-26,2005-09-12,2006-02-19
1759,2001-10-18,,2002-01-17,2001-10-17
1858,2003-04-14,2003-05-17,,2002-12-17
1972,2003-06-01,2003-07-14,2002-12-14,
5905,2000-11-18,2001-01-13,,2000-11-04
2052,2002-06-11,,2002-08-23,2001-12-12
2165,2006-10-01,,2007-02-27,2006-09-30
2218,2007-09-19,,2008-02-06,2007-09-09
2350,2000-08-08,,2000-09-22,2000-01-08
2432,2001-08-22,,2001-09-25,2000-12-16
2611,2005-05-07,,2005-06-05,2005-03-26
2612,2005-05-06,,2005-05-26,2005-04-11
7378,2009-08-07,2009-01-30,2010-01-20,2009-06-08
7550,2006-04-08,,2006-06-01,2006-04-01 '''
df = pandas.read_csv(StringIO.StringIO(txt))
sequence_array = ['RUN_START_DATE', 'PUSHUP_START_DATE', 'SITUP_START_DATE', 'PULLUP_START_DATE']
xsequence_array = ['X_RUN_START_DATE', 'X_PUSHUP_START_DATE', 'X_SITUP_START_DATE', 'X_PULLUP_START_DATE']
df[sequence_array] = df[sequence_array].apply(correct_date, axis=1)
fix_day = lambda x: x if x > 0 else 29
fix_month = lambda x: x if x > 0 else 02
fix_year = lambda x: x if x > 0 else 2020
for col in sequence_array:
xcol = 'X_{0}'.format(col)
df[xcol] = ['{0:04d}{1:02d}{2:02d}'.format(fix_year(c.year), fix_month(c.month), fix_day(c.day)) for c in df[col]]
df['X_AS_SEQUENCE'] = df[xsequence_array].apply(sq_fixer, axis=1)
当我运行代码时,大多数结果都是正确的。以索引6为例:
In [31]: df.ix[6]
Out[31]:
ID 7
RUN_START_DATE 2013-01-26 00:00:00
PUSHUP_START_DATE NaN
SITUP_START_DATE 2013-01-12 00:00:00
PULLUP_START_DATE 2013-01-30 00:00:00
X_RUN_START_DATE 20130126
X_PUSHUP_START_DATE 20200229
X_SITUP_START_DATE 20130112
X_PULLUP_START_DATE 20130130
X_AS_SEQUENCE 1.0,nan,0.0,2.0
然而,某些索引似乎抛出pandas.argsort()作为循环。以索引10为例:
In [32]: df.ix[10]
Out[32]:
ID 3347
RUN_START_DATE NaN
PUSHUP_START_DATE 2008-02-27 00:00:00
SITUP_START_DATE 2008-04-10 00:00:00
PULLUP_START_DATE 2008-02-13 00:00:00
X_RUN_START_DATE 20200229
X_PUSHUP_START_DATE 20080227
X_SITUP_START_DATE 20080410
X_PULLUP_START_DATE 20080213
X_AS_SEQUENCE nan,2.0,0.0,1.0
argsort应该返回nan,1.0,2.0,0.0
而不是nan,2.0,0.0,1.0
。
我已经在这三天了。在这一点上,我不确定这是我还是一个bug。我不知道如何回溯它以获得答案。任何帮助都将非常感激!
答案 0 :(得分:4)
您可能错误地解释了argsort
的结果。 argsort
没有给出值的排名。如果要对值进行排名,请使用rank方法。
argsort
返回的Series中的值在删除NaN后给出原始值的相应位置。在您的情况下,由于您将20200229转换为NaN,因此您需要NaN, 20080227, 20080410, 20080213
。非NaN值是
nonnan = [20080227, 20080410, 20080213]
结果,NaN, 2, 0, 1
说:
argsort sorted values
NaN NaN
2 nonnan[2] = 20080213
0 nonnan[0] = 20080227
1 nonnan[1] = 20080410
所以我看起来还不错。
答案 1 :(得分:0)
如果要对系列进行排序,只需使用sort_values()或rank()函数:
In [2]: a=pd.Series([3,2,1])
In [3]: a
Out[3]:
0 3
1 2
2 1
dtype: int64
In [4]: a.sort_values()
Out[4]:
2 1
1 2
0 3
dtype: int64
如果使用argsort(),这将为您提供排序系列中每个元素的位置, 在这种情况下,1应该在0位置,2应该在1位置,3应该在2位置
In [5]: a.argsort()
Out[5]:
0 2
1 1
2 0
dtype: int64