我正在从SAS迁移到R.我需要帮助搞清楚如何总结日期范围的天气数据。在SAS中,我采用日期范围,使用数据步骤为范围内的每个日期(startdate
,enddate
,date
)创建记录,与天气合并然后汇总(VAR hdd cdd; CLASS = startdate enddate sum =)总结日期范围的值。
R代码:
startdate <- c(100,103,107)
enddate <- c(105,104,110)
billperiods <-data.frame(startdate,enddate);
得到:
> billperiods
startdate enddate
1 100 105
2 103 104
3 107 110
R代码:
weatherdate <- c(100:103,105:110)
hdd <- c(0,0,4,5,0,0,3,1,9,0)
cdd <- c(4,1,0,0,5,6,0,0,0,10)
weather <- data.frame(weatherdate,hdd,cdd)
得到:
> weather
weatherdate hdd cdd
1 100 0 4
2 101 0 1
3 102 4 0
4 103 5 0
5 105 0 5
6 106 0 6
7 107 3 0
8 108 1 0
9 109 9 0
10 110 0 10
注意:weatherdate = 104
缺失。我可能一天都没有天气。
我无法弄清楚如何到达:
> billweather
startdate enddate sumhdd sumcdd
1 100 105 9 10
2 103 104 5 0
3 107 110 13 10
其中sumhdd
是天气hdd
中从startdate
到enddate
的{{1}}的总和。
有什么想法吗?
答案 0 :(得分:3)
以下是使用IRanges
和data.table
的方法。看来,对于这个问题,这个答案可能看起来有点矫枉过正。但总的来说,我觉得使用IRanges
处理间隔很方便,它们可能有多简单。
# load packages
require(IRanges)
require(data.table)
# convert data.frames to data.tables
dt1 <- data.table(billperiods)
dt2 <- data.table(weather)
# construct Ranges to get overlaps
ir1 <- IRanges(dt1$startdate, dt1$enddate)
ir2 <- IRanges(dt2$weatherdate, width=1) # start = end
# find Overlaps
olaps <- findOverlaps(ir1, ir2)
# Hits of length 10
# queryLength: 3
# subjectLength: 10
# queryHits subjectHits
# <integer> <integer>
# 1 1 1
# 2 1 2
# 3 1 3
# 4 1 4
# 5 1 5
# 6 2 4
# 7 3 7
# 8 3 8
# 9 3 9
# 10 3 10
# get billweather (final output)
billweather <- cbind(dt1[queryHits(olaps)],
dt2[subjectHits(olaps),
list(hdd, cdd)])[, list(sumhdd = sum(hdd),
sumcdd = sum(cdd)),
by=list(startdate, enddate)]
# startdate enddate sumhdd sumcdd
# 1: 100 105 9 10
# 2: 103 104 5 0
# 3: 107 110 13 10
最后一行的代码细分:首先,我使用queryHits
,subjectHits
和cbind
构建一个中途data.table
,然后,我按startdate, enddate
分组,获得hdd
和cdd
之和的总和。如下所示,更容易分别查看该行,以便更好地理解。
# split for easier understanding
billweather <- cbind(dt1[queryHits(olaps)],
dt2[subjectHits(olaps),
list(hdd, cdd)])
billweather <- billweather[, list(sumhdd = sum(hdd),
sumcdd = sum(cdd)),
by=list(startdate, enddate)]
答案 1 :(得分:1)
billweather <- cbind(billperiods,
t(apply(billperiods, 1, function(x) {
colSums(weather[weather[, 1] %in% c(x[1]:x[2]), 2:3])
})))
答案 2 :(得分:1)
cbind(billperiods, t(sapply(apply(billperiods, 1, function(x)
weather[weather$weatherdate >= x[1] &
weather$weatherdate <= x[2], c("hdd", "cdd")]), colSums)))
startdate enddate hdd cdd
1 100 105 9 10
2 103 104 5 0
3 107 110 13 10