python中的wordnet词形还原和pos标记

时间:2013-03-23 12:23:54

标签: python nltk wordnet lemmatization

我想在python中使用wordnet lemmatizer并且我已经知道默认的pos标签是NOUN并且它没有为动词输出正确的引理,除非明确指定pos标签作为VERB。

我的问题是,准确执行上述词形还原的最佳镜头是什么?

我使用nltk.pos_tag进行了pos标记,并且在将树库pos标记与wordnet兼容的pos标记集成时我迷失了方向。请帮忙

from nltk.stem.wordnet import WordNetLemmatizer
lmtzr = WordNetLemmatizer()
tagged = nltk.pos_tag(tokens)

我在NN,JJ,VB,RB中获得输出标签。如何将这些更改为与wordnet兼容的标签?

我是否也必须使用带标记的语料库训练nltk.pos_tag(),还是可以直接在我的数据上使用它来评估?

7 个答案:

答案 0 :(得分:65)

首先,您可以直接使用nltk.pos_tag()而无需接受培训。 该函数将从文件加载预训练的标记器。您可以看到文件名 与nltk.tag._POS_TAGGER

nltk.tag._POS_TAGGER
>>> 'taggers/maxent_treebank_pos_tagger/english.pickle' 

由于它是使用Treebank语料库训练的,因此它也使用Treebank tag set

以下函数会将树库标记映射到WordNet词性名称:

from nltk.corpus import wordnet

def get_wordnet_pos(treebank_tag):

    if treebank_tag.startswith('J'):
        return wordnet.ADJ
    elif treebank_tag.startswith('V'):
        return wordnet.VERB
    elif treebank_tag.startswith('N'):
        return wordnet.NOUN
    elif treebank_tag.startswith('R'):
        return wordnet.ADV
    else:
        return ''

然后,您可以将返回值与词形变换器一起使用:

from nltk.stem.wordnet import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
lemmatizer.lemmatize('going', wordnet.VERB)
>>> 'go'

在将返回值传递给Lemmatizer之前检查返回值,因为空字符串会产生KeyError

答案 1 :(得分:9)

与nltk.corpus.reader.wordnet(http://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html

的源代码一样
#{ Part-of-speech constants
 ADJ, ADJ_SAT, ADV, NOUN, VERB = 'a', 's', 'r', 'n', 'v'
#}
POS_LIST = [NOUN, VERB, ADJ, ADV]

答案 2 :(得分:8)

  

转换步骤:文档 - >句子 - >令牌 - > POS-> Lemmas

import nltk
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet

#example text text = 'What can I say about this place. The staff of these restaurants is nice and the eggplant is not bad'

class Splitter(object):
    """
    split the document into sentences and tokenize each sentence
    """
    def __init__(self):
        self.splitter = nltk.data.load('tokenizers/punkt/english.pickle')
        self.tokenizer = nltk.tokenize.TreebankWordTokenizer()

    def split(self,text):
        """
        out : ['What', 'can', 'I', 'say', 'about', 'this', 'place', '.']
        """
        # split into single sentence
        sentences = self.splitter.tokenize(text)
        # tokenization in each sentences
        tokens = [self.tokenizer.tokenize(sent) for sent in sentences]
        return tokens


class LemmatizationWithPOSTagger(object):
    def __init__(self):
        pass
    def get_wordnet_pos(self,treebank_tag):
        """
        return WORDNET POS compliance to WORDENT lemmatization (a,n,r,v) 
        """
        if treebank_tag.startswith('J'):
            return wordnet.ADJ
        elif treebank_tag.startswith('V'):
            return wordnet.VERB
        elif treebank_tag.startswith('N'):
            return wordnet.NOUN
        elif treebank_tag.startswith('R'):
            return wordnet.ADV
        else:
            # As default pos in lemmatization is Noun
            return wordnet.NOUN

    def pos_tag(self,tokens):
        # find the pos tagginf for each tokens [('What', 'WP'), ('can', 'MD'), ('I', 'PRP') ....
        pos_tokens = [nltk.pos_tag(token) for token in tokens]

        # lemmatization using pos tagg   
        # convert into feature set of [('What', 'What', ['WP']), ('can', 'can', ['MD']), ... ie [original WORD, Lemmatized word, POS tag]
        pos_tokens = [ [(word, lemmatizer.lemmatize(word,self.get_wordnet_pos(pos_tag)), [pos_tag]) for (word,pos_tag) in pos] for pos in pos_tokens]
        return pos_tokens

lemmatizer = WordNetLemmatizer()
splitter = Splitter()
lemmatization_using_pos_tagger = LemmatizationWithPOSTagger()

#step 1 split document into sentence followed by tokenization
tokens = splitter.split(text)

#step 2 lemmatization using pos tagger 
lemma_pos_token = lemmatization_using_pos_tagger.pos_tag(tokens)
print(lemma_pos_token)

答案 3 :(得分:5)

你可以使用python默认字典创建一个地图,并利用这个事实,即对于词形变换器,默认标签是名词。

from nltk.corpus import wordnet as wn
from nltk.stem.wordnet import WordNetLemmatizer
from nltk import word_tokenize, pos_tag
from collections import defaultdict

tag_map = defaultdict(lambda : wn.NOUN)
tag_map['J'] = wn.ADJ
tag_map['V'] = wn.VERB
tag_map['R'] = wn.ADV

text = "Another way of achieving this task"
tokens = word_tokenize(text)
lmtzr = WordNetLemmatizer()

for token, tag in pos_tag(tokens):
    lemma = lmtzr.lemmatize(token, tag_map[tag[0]])
    print(token, "=>", lemma)

答案 4 :(得分:2)

@Suzana_K正在运作。但我有一些案例导致KeyError为@ Clock Slave提及。

将树库标签转换为Wordnet标签

from nltk.corpus import wordnet

def get_wordnet_pos(treebank_tag):

    if treebank_tag.startswith('J'):
        return wordnet.ADJ
    elif treebank_tag.startswith('V'):
        return wordnet.VERB
    elif treebank_tag.startswith('N'):
        return wordnet.NOUN
    elif treebank_tag.startswith('R'):
        return wordnet.ADV
    else:
        return None # for easy if-statement 

现在,我们只在我们有wordnet标签

时才将pos输入到lemmatize函数中
from nltk.stem.wordnet import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
tagged = nltk.pos_tag(tokens)
for word, tag in tagged:
    wntag = get_wordnet_pos(tag)
    if wntag is None:# not supply tag in case of None
        lemma = lemmatizer.lemmatize(word) 
    else:
        lemma = lemmatizer.lemmatize(word, pos=wntag) 

答案 5 :(得分:0)

您可以在一行中执行此操作:

wnpos = lambda e: ('a' if e[0].lower() == 'j' else e[0].lower()) if e[0].lower() in ['n', 'r', 'v'] else 'n'

然后使用wnpos(nltk_pos)获取POS给.lemmatize()。在您的情况下,lmtzr.lemmatize(word=tagged[0][0], pos=wnpos(tagged[0][1]))

答案 6 :(得分:0)

从互联网上搜索之后,我找到了以下解决方案:从句子到拆分,pos_tagging,词形化和清理(从标点和“停词”)操作衍生出来的“单词袋”。 这是我的代码:

from nltk.corpus import wordnet as wn
from nltk.wsd import lesk
from nltk.stem import WordNetLemmatizer 
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize

punctuation = u",.?!()-_\"\'\\\n\r\t;:+*<>@#§^$%&|/"
stop_words_eng = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tag_dict = {"J": wn.ADJ,
            "N": wn.NOUN,
            "V": wn.VERB,
            "R": wn.ADV}

def extract_wnpostag_from_postag(tag):
    #take the first letter of the tag
    #the second parameter is an "optional" in case of missing key in the dictionary 
    return tag_dict.get(tag[0].upper(), None)

def lemmatize_tupla_word_postag(tupla):
    """
    giving a tupla of the form (wordString, posTagString) like ('guitar', 'NN'), return the lemmatized word
    """
    tag = extract_wnpostag_from_postag(tupla[1])    
    return lemmatizer.lemmatize(tupla[0], tag) if tag is not None else tupla[0]

def bag_of_words(sentence, stop_words=None):
    if stop_words is None:
        stop_words = stop_words_eng
    original_words = word_tokenize(sentence)
    tagged_words = nltk.pos_tag(original_words) #returns a list of tuples: (word, tagString) like ('And', 'CC')
    original_words = None
    lemmatized_words = [ lemmatize_tupla_word_postag(ow) for ow in tagged_words ]
    tagged_words = None
    cleaned_words = [ w for w in lemmatized_words if (w not in punctuation) and (w not in stop_words) ]
    lemmatized_words = None
    return cleaned_words

sentence = "Two electric guitar rocks players, and also a better bass player, are standing off to two sides reading corpora while walking"
print(sentence, "\n\n bag of words:\n", bag_of_words(sentence) )