此查询运行速度非常慢。为什么?其他人都很好。我认为指数很好。
explain analyze
select "e_inst"."si_id" as "c0"
from "e_inst" as "e_inst"
group by "e_inst"."si_id"
order by "e_inst"."si_id" ASC NULLS LAST
查询计划:
Sort (cost=12221.87..12221.90 rows=68 width=4) (actual time=1115.377..1115.433 rows=81 loops=1)
Sort Key: si_id
Sort Method: quicksort Memory: 28kB
-> HashAggregate (cost=12221.25..12221.45 rows=68 width=4) (actual time=1115.198..1115.261 rows=81 loops=1)
-> Seq Scan on e_inst (cost=0.00..11920.07 rows=602357 width=4) (actual time=0.021..611.570 rows=602357 loops=1)
Total runtime: 1115.538 ms
创建表和索引:
CREATE TABLE e_inst (
id integer NOT NULL,
ip numeric,
gu character varying,
referrer character varying,
proc integer,
loke_id integer,
top_id integer,
si_id integer,
kop integer,
count integer,
created integer,
modified integer,
timepop integer,
count_active character varying,
country character(3),
info character varying
);
CREATE INDEX "topEnhance" ON e_inst USING btree (created, top_id);
CREATE INDEX "procEnhance" ON e_inst USING btree (created, proc);
CREATE INDEX "countryEnhance" ON e_install USING btree (created, country);
CREATE INDEX "createdE" ON e_inst USING btree (created);
ALTER TABLE e_inst CLUSTER ON "createdE";
CREATE INDEX "lokeE" ON e_inst USING btree (loke_id);
CREATE INDEX "lokeEnhance" ON e_inst USING btree (created, loke_id);
CREATE INDEX "siE" ON e_inst USING btree (si_id);
CREATE INDEX "siEnhance" ON e_inst USING btree (created, si_id);
CREATE INDEX "kopEnhance" ON e_inst USING btree (created, kop);
答案 0 :(得分:3)
处理整个表的查询不会使用索引。
事实上,您正在检索并处理 600k记录。它在一秒钟内实现这一点实际上是令人印象深刻的。
现在在这种情况下,您试图从600k记录中提取出81个不同的值。你可能想要做的是构造一个递归查询,使其获取一行81次。这个可能更快,但无法保证。通常我会在返回的行数少得多的地方使用它们。不过这是一个例子:
WITH RECURSIVE sparse_scan AS (
SELECT min(si_id) as si_id FROM e_inst
UNION ALL
SELECT min(si_id) as si_id
FROM e_inst
JOIN (select max(si_id) as last FROM sparse_scan) s
WHERE s.last < si_id
)
SELECT si_id as c0 FROM sparse_scan;
请注意,这将使用81次索引扫描替换顺序扫描。
答案 1 :(得分:0)
升级到PostgreSQL 9.2。现在这只是一个索引扫描! 工作得很好,感谢a_horse_with_no_name谁建议我升级。