我有一个需要转换为十进制的12位二进制文件。例如:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
位1是最高位,位12是最低有效位。
答案 0 :(得分:10)
注意:此答案主要适用于无符号数据类型。要转换为签名类型,需要执行一些额外步骤,讨论here。
bin2dec
函数是一个选项,但要求您先将向量更改为字符串。与自己计算数字相比,bin2dec
也可能比较慢。这是一个大约快75倍的解决方案:
>> A = [0,1,1,0,0,0,0,0,1,1,0,0];
>> B = sum(A.*2.^(numel(A)-1:-1:0))
B =
1548
为了解释,A
在元素方面乘以2的幂向量,指数范围从numel(A)-1
到0
。然后对得到的矢量求和,得到由零和1的二进制模式表示的整数,其中数组中的第一个元素被认为是最高有效位。如果您希望将第一个元素视为最低有效位,则可以执行以下操作:
>> B = sum(A.*2.^(0:numel(A)-1))
B =
774
更新:您可以通过使用find
获取其中的索引,从MATLAB中挤出更快的速度(避免逐元素乘法并可能减少所需的指数计算次数)并使用pow2
函数代替2.^...
:
B = sum(pow2(find(flip(A))-1)); % Most significant bit first
B = sum(pow2(find(A)-1)); % Least significant bit first
将解决方案扩展到矩阵......
如果要将大量二进制向量转换为整数,可以轻松修改上述解决方案,以便通过一个矩阵运算转换所有值。假设A
是N×12矩阵,每行有一个二进制向量。以下将它们全部转换为整数值的N乘1矢量:
B = A*(2.^(size(A, 2)-1:-1:0)).'; % Most significant bit first
B = A*(2.^(0:size(A, 2)-1)).'; % Least significant bit first
另请注意,上述所有解决方案都会通过查看A
中的列数自动确定向量中的位数。
答案 1 :(得分:4)
Dominic的回答假设您可以访问数据采集工具箱。如果不使用 bin2dec :
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A) )
或(反向)
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A(end:-1:1)) )
取决于你想要的第1和第12位!
答案 2 :(得分:2)
如果MSB是最正确的(我不确定你在第1位的意思,抱歉,如果这看起来很愚蠢):
尝试:
binvec2dec(A)
输出应为:
ans =
774
如果MSB最左侧,请先使用fliplr(A)
。