在行和列中切片scipy.sparse.lil_matrix

时间:2013-03-17 20:53:53

标签: python numpy scipy sparse-matrix

我想从scipy稀疏矩阵中提取特定的行和列 - 这里lil_matrix可能是最好的选择。

这里工作正常:

from scipy import sparse
lilm=sparse.lil_matrix((10,10))
lilm[0:4,0:3]

返回4x3稀疏矩阵。我不希望矩阵中的块,而是单个列和行。我希望这可行:

lilm[[1,2,3],[4,5,6]]

但它返回1x3稀疏矩阵。这也适用于numpy数组,但你可以使用numpy.ix_,如Slicing of a NumPy 2d array, or how do I extract an mxm submatrix from an nxn array (n>m)?中所述。

如何使用lil_matrix来完成此行为?

slicing sparse (scipy) matrix部分回答了我的问题,但我无法让这个问题适用于lil_matrix

1 个答案:

答案 0 :(得分:4)

您需要首先提取行,然后是列:

>>> a = np.arange(100).reshape(10, 10)
>>> a
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
       [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
       [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
       [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
       [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])

>>> lilm = scipy.sparse.lil_matrix(a)

>>> lilm[[1, 2, 3], :].toarray() # extract the rows first...
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]])

>>> lilm[[1, 2, 3], :][:, [4, 5, 6]].toarray() # ...then the columns
array([[14, 15, 16],
       [24, 25, 26],
       [34, 35, 36]])

您当然会从最后一个表达式中删除.toarray()以获得作为LIL稀疏矩阵的返回。