jmp到gcc4.4.6-3编译的自我指令

时间:2013-03-16 04:56:58

标签: c++ gcc

我有一个C ++项目,由gcc-4.1.2-46和gcc-4.4.5-6

正确编译

但是在gcc-4.4.6-3使用-O2编译时它有一个异常的死循环。

我在进程运行时使用gdb附加它,并发现线程正在运行但堆栈没有改变。

objdump程序,发现它有3个自我指令jmp,如下:

   432f6c:       48 89 c7                mov    %rax,%rdi 
   432f6f:       90                      nop 
   432f70:       e8 b3 e4 fd ff          callq  411428 <_Unwind_Resume@plt> 
   432f75:       eb fe                   jmp    432f75 <_ZN9oceanbase12updateserver11QueryEngine3getERKNS0_5TEKeyE+0x4d5> 
   432f77:       48 8d 7c 24 70          lea    0x70(%rsp),%rdi 
   432f7c:       48 89 c3                mov    %rax,%rbx 
   432f7f:       e8 9c 32 00 00          callq  436220 <_ZN9oceanbase12updateserver12BitLockGuardD1Ev>

我没有在代码中使用“goto”。

当代码由gcc-4.4.6-3使用-O0编译时,

自我指令的jmp消失了

所以我怀疑这是gcc-4.4.6.3的错误。

代码是一个简单的多线程Hashmap,使用BitLock来保护存储桶:

      #define ATOMIC_CAS(val, cmpv, newv) __sync_val_compare_and_swap((val), (cmpv), (newv))
      #define ATOMIC_ADD(val, addv) __sync_add_and_fetch((val), (addv))
      #define ATOMIC_SUB(val, subv) __sync_sub_and_fetch((val), (subv))

      template <typename Key,
                typename Value,
                typename BucketAllocator,
                typename NodeAllocator>
      class LightyHashMap
      {
        struct Node
        {
          Key key;
          Value value;
          union
          {
            Node *next;
            int64_t flag;
          };
        };
        static const int64_t EMPTY_FLAG = 0xffffffffffffffff;
        static const int64_t INIT_UNIT_SIZE = (64L * 1024L / sizeof(Node)) * sizeof(Node);
        typedef Hash<Key> HashFunc;
        typedef Equal<Key> EqualFunc;
        public:
          LightyHashMap(BucketAllocator &bucket_allocator, NodeAllocator &node_allocator);
          ~LightyHashMap();
        private:
          DISALLOW_COPY_AND_ASSIGN(LightyHashMap);
        public:
          int create(const int64_t bucket_num);
          void destroy();
          int clear();
        public:
          inline int insert(const Key &key, const Value &value);
          inline int get(const Key &key, Value &value);
          inline int erase(const Key &key, Value *value = NULL);
          inline int64_t uninit_unit_num() const;
          inline int64_t bucket_using() const;
          inline int64_t size() const;
        private:
          void init_bucket_unit_(const int64_t bucket_pos);
        private:
          BucketAllocator &bucket_allocator_;
          NodeAllocator &node_allocator_;
          int64_t bucket_num_;
          Node *buckets_;
          volatile int64_t uninit_unit_num_;
          uint8_t *init_units_;
          BitLock bit_lock_;
          int64_t bucket_using_;
          int64_t size_;
          HashFunc hash_func_;
          EqualFunc equal_func_;
      };

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::LightyHashMap(
        BucketAllocator &bucket_allocator,
        NodeAllocator &node_allocator) : bucket_allocator_(bucket_allocator),
                                         node_allocator_(node_allocator),
                                         bucket_num_(0),
                                         buckets_(NULL),
                                         uninit_unit_num_(0),
                                         init_units_(NULL),
                                         bucket_using_(0),
                                         size_(0),
                                         hash_func_(),
                                         equal_func_()
      {
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::~LightyHashMap()
      {
        destroy();
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::create(const int64_t bucket_num)
      {
        int ret = common::OB_SUCCESS;
        int64_t uninit_unit_num = (bucket_num * sizeof(Node) / INIT_UNIT_SIZE) \
                                  + ((0 == (bucket_num * sizeof(Node) % INIT_UNIT_SIZE)) ? 0 : 1);
        if (NULL != buckets_)
        {
          ret = common::OB_INIT_TWICE;
        }
        else if (0 >= bucket_num)
        {
          ret = common::OB_INVALID_ARGUMENT;
        }
        else if (NULL == (buckets_ = (Node*)bucket_allocator_.alloc(bucket_num * sizeof(Node))))
        {
          ret = common::OB_MEM_OVERFLOW;
        }
        else if (NULL == (init_units_ = (uint8_t*)bucket_allocator_.alloc(uninit_unit_num * sizeof(uint8_t))))
        {
          ret = common::OB_MEM_OVERFLOW;
        }
        else if (OB_SUCCESS != (ret = bit_lock_.init(bucket_num)))
        {
          // init bit lock fail
        }
        else
        {
          bucket_num_ = bucket_num;
          uninit_unit_num_ = uninit_unit_num;
          memset(init_units_, 0, uninit_unit_num_ * sizeof(uint8_t));
          bucket_using_ = 0;
          size_ = 0;
        }
        if (common::OB_SUCCESS != ret)
        {
          destroy();
        }
        return ret;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      void LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::destroy()
      {
        if (NULL != buckets_)
        {
          if (NULL != init_units_)
          {
            for (int64_t i = 0; i < bucket_num_; i++)
            {
              int64_t unit_pos = i * sizeof(Node) / INIT_UNIT_SIZE;
              uint8_t ov = init_units_[unit_pos];
              if (0 == (ov & 0x80))
              {
                continue;
              }
              Node *iter = buckets_[i].next;
              while (EMPTY_FLAG != buckets_[i].flag
                    && NULL != iter)
              {
                Node *tmp = iter;
                iter = iter->next;
                node_allocator_.free(tmp);
              }
              buckets_[i].flag = EMPTY_FLAG;
            }
          }
          bucket_allocator_.free(buckets_);
          buckets_ = NULL;
        }
        if (NULL != init_units_)
        {
          bucket_allocator_.free(init_units_);
          init_units_ = NULL;
        }
        bit_lock_.destroy();
        bucket_num_ = 0;
        uninit_unit_num_ = 0;
        bucket_using_ = 0;
        size_ = 0;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::clear()
      {
        int ret = common::OB_SUCCESS;
        if (NULL == buckets_
            || NULL == init_units_)
        {
          ret = common::OB_NOT_INIT;
        }
        else
        {
          for (int64_t i = 0; i < bucket_num_; i++)
          {
            int64_t unit_pos = i * sizeof(Node) / INIT_UNIT_SIZE;
            uint8_t ov = init_units_[unit_pos];
            if (0 == (ov & 0x80))
            {
              continue;
            }
            BitLockGuard guard(bit_lock_, i);
            Node *iter = buckets_[i].next;
            while (EMPTY_FLAG != buckets_[i].flag
                  && NULL != iter)
            {
              Node *tmp = iter;
              iter = iter->next;
              node_allocator_.free(tmp);
            }
            buckets_[i].flag = EMPTY_FLAG;
          }
          uninit_unit_num_ = (bucket_num_ * sizeof(Node) / INIT_UNIT_SIZE) \
                              + ((0 == (bucket_num_ * sizeof(Node) % INIT_UNIT_SIZE)) ? 0 : 1);
          memset(init_units_, 0, uninit_unit_num_ * sizeof(Node));
          bucket_using_ = 0;
          size_ = 0;
        }
        return ret;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::insert(const Key &key, const Value &value)
      {
        int ret = common::OB_SUCCESS;
        if (NULL == buckets_
            || NULL == init_units_)
        {
          ret = common::OB_NOT_INIT;
        }
        else
        {
          int64_t hash_value = hash_func_(key);
          int64_t bucket_pos = hash_value % bucket_num_;
          init_bucket_unit_(bucket_pos);
          BitLockGuard guard(bit_lock_, bucket_pos);
          if (EMPTY_FLAG == buckets_[bucket_pos].flag)
          {
            buckets_[bucket_pos].key = key;
            buckets_[bucket_pos].value = value;
            buckets_[bucket_pos].next = NULL;
            common::atomic_inc((uint64_t*)&bucket_using_);
            common::atomic_inc((uint64_t*)&size_);
          }
          else
          {
            Node *iter = &(buckets_[bucket_pos]);
            while (true)
            {
              if (equal_func_(iter->key, key))
              {
                ret = common::OB_ENTRY_EXIST;
                break;
              }
              if (NULL != iter->next)
              {
                iter = iter->next;
              }
              else
              {
                break;
              }
            }
            if (common::OB_SUCCESS == ret)
            {
              Node *node = (Node*)node_allocator_.alloc(sizeof(Node));
              if(NULL == node)
              {
                ret = common::OB_MEM_OVERFLOW;
              }
              else
              {
                node->key = key;
                node->value = value;
                node->next = NULL;
                iter->next = node;
                common::atomic_inc((uint64_t*)&size_);
              }
            }
          }
        }
        return ret;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::get(const Key &key, Value &value)
      {
        int ret = common::OB_SUCCESS;
        if (NULL == buckets_
            || NULL == init_units_)
        {
          ret = common::OB_NOT_INIT;
        }
        else
        {
          int64_t hash_value = hash_func_(key);
          int64_t bucket_pos = hash_value % bucket_num_;
          init_bucket_unit_(bucket_pos);
          BitLockGuard guard(bit_lock_, bucket_pos);
          ret = common::OB_ENTRY_NOT_EXIST;
          if (EMPTY_FLAG != buckets_[bucket_pos].flag)
          {
            Node *iter = &(buckets_[bucket_pos]);
            while (NULL != iter)
            {
              if (equal_func_(iter->key, key))
              {
                value = iter->value;
                ret = common::OB_SUCCESS;
                break;
              }
              iter = iter->next;
            }
          }
        }
        return ret;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::erase(const Key &key, Value *value)
      {
        int ret = common::OB_SUCCESS;
        if (NULL == buckets_
            || NULL == init_units_)
        {
          ret = common::OB_NOT_INIT;
        }
        else
        {
          int64_t hash_value = hash_func_(key);
          int64_t bucket_pos = hash_value % bucket_num_;
          init_bucket_unit_(bucket_pos);
          BitLockGuard guard(bit_lock_, bucket_pos);
          ret = common::OB_ENTRY_NOT_EXIST;
          if (EMPTY_FLAG != buckets_[bucket_pos].flag)
          {
            Node *iter = &(buckets_[bucket_pos]);
            Node *prev = NULL;
            while (NULL != iter)
            {
              if (equal_func_(iter->key, key))
              {
                if (NULL != value)
                {
                  *value = iter->value;
                }
                if (NULL == prev)
                {
                  buckets_[bucket_pos].flag = EMPTY_FLAG;
                }
                else
                {
                  // do not free deleted node
                  prev->next = iter->next;
                }
                ret = common::OB_SUCCESS;
                break;
              }
              prev = iter;
              iter = iter->next;
            }
          }
        }
        return ret;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int64_t LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::uninit_unit_num() const
      {
        return uninit_unit_num_;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int64_t LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::bucket_using() const
      {
        return bucket_using_;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      int64_t LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::size() const
      {
        return size_;
      }

      template <typename Key, typename Value, typename BucketAllocator, typename NodeAllocator>
      void LightyHashMap<Key, Value, BucketAllocator, NodeAllocator>::init_bucket_unit_(const int64_t bucket_pos)
      {
        while (0 < uninit_unit_num_)
        {
          int64_t unit_pos = bucket_pos * sizeof(Node) / INIT_UNIT_SIZE;
          uint8_t ov = init_units_[unit_pos];
          if (ov & 0x80)
          {
            break;
          }
          ov = 0;
          uint8_t nv = ov | 0x01;
          if (ov == ATOMIC_CAS(&(init_units_[unit_pos]), ov, nv))
          {
            int64_t ms_size = std::min((bucket_num_ - bucket_pos) * sizeof(Node), (uint64_t)INIT_UNIT_SIZE);
            memset((char*)buckets_ + unit_pos * INIT_UNIT_SIZE, -1, ms_size);
            ATOMIC_SUB(&uninit_unit_num_, 1);
            init_units_[unit_pos] = 0x80;
            break;
          }
        }
      }

/////////////////////////////////////////////// ///////////////////////////////////////////

static const uint8_t BIT_MASKS[8] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};

class BitLock
{
  public:
    BitLock() : size_(0),
                bits_(NULL)
    {
    };
    ~BitLock()
    {
      destroy();
    };
  public:
    inline int init(const int64_t size);
    inline void destroy();
    inline int lock(const int64_t index);
    inline int unlock(const int64_t index);
  private:
    int64_t size_;
    uint8_t *bits_;
};

class BitLockGuard
{
  public:
    BitLockGuard(BitLock &lock, const int64_t index) : lock_(lock),
                                                       index_(index)
    {
      lock_.lock(index_);
    };
    ~BitLockGuard()
    {
      lock_.unlock(index_);
    };
  private:
    BitLock &lock_;
    const int64_t index_;
};

int BitLock::init(const int64_t size)
{
  int ret = common::OB_SUCCESS;
  if (0 < size_
      || NULL != bits_)
  {
    ret = common::OB_INIT_TWICE;
  }
  else if (0 >= size)
  {
    ret = common::OB_INVALID_ARGUMENT;
  }
  else
  {
    int64_t byte_size = common::upper_align(size, 8) / 8;
    if (NULL == (bits_ = (uint8_t*)common::ob_malloc(byte_size)))
    {
      ret = common::OB_MEM_OVERFLOW;
    }
    else
    {
      memset(bits_, 0, byte_size);
      size_ = size;
    }
  }
  return ret;
}

void BitLock::destroy()
{
  if (NULL != bits_)
  {
    common::ob_free(bits_);
    bits_ = NULL;
  }
  size_ = 0;
}

int BitLock::lock(const int64_t index)
{
  int ret = common::OB_SUCCESS;
  if (0 >= size_
      || NULL == bits_)
  {
    ret = common::OB_NOT_INIT;
  }
  else if (index >= size_)
  {
    ret = common::OB_INVALID_ARGUMENT;
  }
  else
  {
    int64_t byte_index = index / 8;
    int64_t bit_index = index % 8;
    while (true)
    {
      uint8_t ov = bits_[byte_index];
      if (ov & BIT_MASKS[bit_index])
      {
        continue;
      }
      if (ov == ATOMIC_CAS(&(bits_[byte_index]), ov, ov | BIT_MASKS[bit_index]))
      {
        break;
      }
    }
  }
  return ret;
}

int BitLock::unlock(const int64_t index)
{
  int ret = common::OB_SUCCESS;
  if (0 >= size_
      || NULL == bits_)
  {
    ret = common::OB_NOT_INIT;
  }
  else if (index >= size_)
  {
    ret = common::OB_INVALID_ARGUMENT;
  }
  else
  {
    int64_t byte_index = index / 8;
    int64_t bit_index = index % 8;
    while (true)
    {
      uint8_t ov = bits_[byte_index];
      if (!(ov & BIT_MASKS[bit_index]))
      {
        // have not locked
        break;
      }
      if (ov == ATOMIC_CAS(&(bits_[byte_index]), ov, ov & ~BIT_MASKS[bit_index]))
      {
        break;
      }
    }
  }
  return ret;
}

2 个答案:

答案 0 :(得分:2)

<强>更新

_Unwind_Resume功能

  

恢复unwind进程,在清理代码结束时调用,该代码没有返回到正常的执行线程(即,不是catch)。

请参阅The Secret Life of C++: Day 3: Exceptions

根据this

  

pthread_cancel需要它。   它会在清理后恢复放松。

所以看起来在一个没有catch的线程中有一个异常......鉴于不同版本的gcc和不同的优化级别的行为是不同的,我会冒险你使用线程和有一个race condition

答案 1 :(得分:2)

我怀疑问题出在BitLock::lock

的循环中
    while (true)
    {
      uint8_t ov = bits_[byte_index];
      if (ov & BIT_MASKS[bit_index])
      {
        continue;
      }
      if (ov == ATOMIC_CAS(&(bits_[byte_index]), ov, ov | BIT_MASKS[bit_index]))
      {
        break;
      }
    }

__sync_val_compare_and_swap宏中的ATOMIC_CAS将充当内存屏障,阻止编译器/处理器在其上推测负载,但它不会对它之前的负载做任何事情,因此条件{可以在ov & BIT_MASKS[bit_index]调用之前根据bits_[byte_index]的值优化{1}},从而产生无限循环。

请尝试以下操作:

__sync_val_compare_and_swap

while (true) { uint8_t ov = bits_[byte_index]; if (ov & BIT_MASKS[bit_index]) { __sync_synchronize(); // or define ATOMIC_SYNC if you prefer continue; } if (ov == ATOMIC_CAS(&(bits_[byte_index]), ov, ov | BIT_MASKS[bit_index])) { break; } } 内存屏障将阻止循环退化为微不足道。