使用matplotlib将灰度图像转换为RGB热图图像

时间:2013-03-14 20:27:05

标签: python matplotlib

如何将M x N灰度图像,或者换句话说矩阵或2-D数组转换为RGB热图,或者换句话说是M x N x 3数组?

示例:

 [[0.9, 0.3], [0.2, 0.1]] 

应该成为

[[red, green-blue], [green-blue, blue]] 

其中红色为[1, 0, 0],蓝色为[0, 0, 1]等。

1 个答案:

答案 0 :(得分:14)

import matplotlib.pyplot as plt

img = [[0.9, 0.3], [0.2, 0.1]]

cmap = plt.get_cmap('jet')

rgba_img = cmap(img)
rgb_img = np.delete(rgba_img, 3, 2)

cmap是matplotlib的LinearSegmentedColormap类的实例,它派生自Colormap类。它起作用的原因是__call__中定义的Colormap函数。这是来自matplotlib的git repo的文档字符串供参考,因为它没有在API中描述。

def __call__(self, X, alpha=None, bytes=False):
    """
    *X* is either a scalar or an array (of any dimension).
    If scalar, a tuple of rgba values is returned, otherwise
    an array with the new shape = oldshape+(4,). If the X-values
    are integers, then they are used as indices into the array.
    If they are floating point, then they must be in the
    interval (0.0, 1.0).
    Alpha must be a scalar between 0 and 1, or None.
    If bytes is False, the rgba values will be floats on a
    0-1 scale; if True, they will be uint8, 0-255.
    """

更简单的选项是使用imgplt.imshow显示plt.matshow,然后将结果复制或保存为RGB或RGBA图像。这对我的应用来说太慢了(在我的机器上慢了~30倍)。