我有一些看起来像这样的数据:
A B
6 Often Often
7 Always Always
8 Rarely Rarely
9 Sometimes Often
structure(list(A = structure(c(5L, 6L, 3L, 4L), .Label = c("",
"Almost Never", "Rarely", "Sometimes", "Often", "Always"), class = c("ordered",
"factor")), B = structure(c(5L, 6L, 3L, 5L), .Label = c("", "Almost Never",
"Rarely", "Sometimes", "Often", "Always"), class = c("ordered",
"factor"))), .Names = c("A", "B"), row.names = 6:9, class = "data.frame")
使用摘要,我会根据可能的响应得到每种响应的计数,这正是我想要的:
A B
:0 :0
Almost Never:0 Almost Never:0
Rarely :1 Rarely :1
Sometimes :1 Sometimes :0
Often :1 Often :2
Always :1 Always :1
现在我想操纵这些数字来获得(通常+总是)/总回复。摘要输出是字符输出,但是 - 我可以在冒号上拆分,但必须有更好的方法。
如果给出上面的数据,我如何计算每个问题的常数+总回答的百分比?
答案 0 :(得分:1)
可以使用apply
和table
完成此操作(假设d
是您的数据框):
apply(d, 2, function(col) {
tab = table(col)
(tab["Often"] + tab["Always"]) / sum(tab)
})
请注意,只有在每列中始终至少包含“始终”和“常用”时,上述操作才有效。以下内容略显简洁,但即使列中缺少“始终”或“经常”,也可以使用:
sapply(1:NCOL(d), function(i) {
tab = table(d[, i])
(tab["Often"] + tab["Always"]) / sum(tab)
})