实验结果与CUDA占用计算器不同

时间:2013-03-12 12:12:47

标签: cuda

我研究CUDA架构。

我在下面的环境中制作了一些并行处理代码。

GPU:GTX580(CC为2.0)

每个块的线程数:16x16 = 256

每线程注册:16

每块共享内存:48个字节

我通过编译选项了解寄存器和共享内存大小的数量: - telxas-options = -v 此外,网格大小为32x32 = 1024,并且没有额外的共享内存。

所以,我尝试使用NVIDIA的CUDA_Occupancy_Calculator。 然后,它说,

3.。)GPU占用数据显示在此处和图表中: 每个多处理器的活动线程1536 每个多处理器的活动变形48 每个多处理器的活动线程块6 每个多处理器100%的占用率

所以,我运行应用程序。 但是,结果显示块大小比16x16快8倍。

8x8表示块大小,网格大小为64x64。 16x16表示块大小,网格大小为32x32。 因此,线程的总量是相同的。它没有改变。

我不知道为什么。请帮帮我。

以下代码是我的计划的一部分。

void LOAD_VERTEX(){
        MEM[0] = 60;    //y0 
        MEM[1] = 50;    //x0
        MEM[2] = 128;   //r0
        MEM[3] = 0;     //g0
        MEM[4] = 70;    //b0
        MEM[5] = 260;
        MEM[6] = 50;
        MEM[7] = 135;
        MEM[8] = 70;
        MEM[9] = 0;
        MEM[10] = 260;
        MEM[11] = 250;
        MEM[12] = 0;
        MEM[13] = 200;
        MEM[14] = 55;
        MEM[15] = 60;
        MEM[16] = 250;
        MEM[17] = 55;
        MEM[18] = 182;
        MEM[19] = 100;
        MEM[20] = 30;
        MEM[21] = 330;
        MEM[22] = 72;
        MEM[23] = 12;
        MEM[24] = 25;
        MEM[25] = 30;
        MEM[26] = 130;
        MEM[27] = 80;
        MEM[28] = 255;
        MEM[29] = 15;
        MEM[30] = 230; 
        MEM[31] = 330;
        MEM[32] = 56;   
        MEM[33] = 186;  
        MEM[34] = 201;
}

__global__ void PRINT_POLYGON( unsigned char *IMAGEin, int *MEMin, int dev_ID, int a, int b, int c)
{
        int i = blockIdx.x*TILE_WIDTH + threadIdx.x;
        int j = blockIdx.y*TILE_HEIGHT + threadIdx.y;

        float result_a, result_b;
        int temp[15];
        int k;

        for(k = 0; k < 5; k++){
                temp[k] = a*5+k;
                temp[k+5] = b*5+k;
                temp[k+10] = c*5+k;
        }

        int result_a_up = ((MEMin[temp[11]]-MEMin[temp[1]])*(i-MEMin[temp[0]]))-((MEMin[temp[10]]-MEMin[temp[0]])*(j-MEMin[temp[1]]));
        int result_a_down = ((MEMin[temp[11]]-MEMin[temp[1]])*(MEMin[temp[5]]-MEMin[temp[0]]))-((MEMin[temp[6]]-MEMin[temp[1]])*(MEMin[temp[10]]-MEMin[temp[0]]));

        int result_b_up = ((MEMin[temp[6]] -MEMin[temp[1]])*(MEMin[temp[0]]-i))-((MEMin[temp[5]] -MEMin[temp[0]])*(MEMin[temp[1]]-j));
        int result_b_down = ((MEMin[temp[11]]-MEMin[temp[1]])*(MEMin[temp[5]]-MEMin[temp[0]]))-((MEMin[temp[6]]-MEMin[temp[1]])*(MEMin[temp[10]]-MEMin[temp[0]]));

        result_a = float(result_a_up) / float(result_a_down);
        result_b = float(result_b_up) / float(result_b_down);

        int isIn = (0 <= result_a && result_a <=1) && ((0 <= result_b && result_b <= 1)) && ((0 <= (result_a+result_b) && (result_a+result_b) <= 1));

        IMAGEin[(i*HEIGHTs+j)*CHANNELS] += (int)(float(MEMin[temp[2]]) + (float(MEMin[temp[7]])-float(MEMin[temp[2]]))*result_a + (float(MEMin[temp[12]])-float(MEMin[temp[2]]))*result_b) * isIn;      //Red Channel
        IMAGEin[(i*HEIGHTs+j)*CHANNELS+1] += (int)(float(MEMin[temp[3]]) + (float(MEMin[temp[8]])-float(MEMin[temp[3]]))*result_a + (float(MEMin[temp[13]])-float(MEMin[temp[3]]))*result_b) * isIn;    //Green Channel
        IMAGEin[(i*HEIGHTs+j)*CHANNELS+2] += (int)(float(MEMin[temp[4]]) + (float(MEMin[temp[9]])-float(MEMin[temp[4]]))*result_a + (float(MEMin[temp[14]])-float(MEMin[temp[4]]))*result_b) * isIn;    //Blue Channel

}

//The information each device
struct DataStruct {
    int                 deviceID;
    unsigned char       IMAGE_SEG[WIDTH*HEIGHTs*CHANNELS];
};

void* routine( void *pvoidData ) {
        DataStruct  *data = (DataStruct*)pvoidData;
        unsigned char *dev_IMAGE;
        int *dev_MEM;
        unsigned char *IMAGE_SEG = data->IMAGE_SEG;

        HANDLE_ERROR(cudaSetDevice(data->deviceID));

        //initialize array
        memset(IMAGE_SEG, 0, WIDTH*HEIGHTs*CHANNELS);

        printf("Device %d Starting..\n", data->deviceID);

        //Evaluate Time
        cudaEvent_t start, stop;
        cudaEventCreate( &start );
        cudaEventCreate( &stop );

        HANDLE_ERROR( cudaMalloc( (void **)&dev_MEM, sizeof(int)*35) );                                //Creating int array each Block
        HANDLE_ERROR( cudaMalloc( (void **)&dev_IMAGE, sizeof(unsigned char)*WIDTH*HEIGHTs*CHANNELS) ); //output array

        cudaMemcpy(dev_MEM, MEM, sizeof(int)*256, cudaMemcpyHostToDevice);
        cudaMemset(dev_IMAGE, 0, sizeof(unsigned char)*WIDTH*HEIGHTs*CHANNELS);

        dim3    grid(WIDTH/TILE_WIDTH, HEIGHTs/TILE_HEIGHT);            //blocks in a grid
        dim3    block(TILE_WIDTH, TILE_HEIGHT);                         //threads in a block

        cudaEventRecord(start, 0);

        PRINT_POLYGON<<<grid,block>>>( dev_IMAGE, dev_MEM, data->deviceID, 0, 1, 2);                    //Start the Kernel
        PRINT_POLYGON<<<grid,block>>>( dev_IMAGE, dev_MEM, data->deviceID, 0, 2, 3);                    //Start the Kernel
        PRINT_POLYGON<<<grid,block>>>( dev_IMAGE, dev_MEM, data->deviceID, 0, 3, 4);                    //Start the Kernel
        PRINT_POLYGON<<<grid,block>>>( dev_IMAGE, dev_MEM, data->deviceID, 0, 4, 5);                    //Start the Kernel
        PRINT_POLYGON<<<grid,block>>>( dev_IMAGE, dev_MEM, data->deviceID, 3, 2, 4);                    //Start the Kernel
        PRINT_POLYGON<<<grid,block>>>( dev_IMAGE, dev_MEM, data->deviceID, 2, 6, 4);                    //Start the Kernel

        cudaEventRecord(stop, 0);
        cudaEventSynchronize(stop);

        HANDLE_ERROR( cudaMemcpy( IMAGE_SEG, dev_IMAGE, sizeof(unsigned char)*WIDTH*HEIGHTs*CHANNELS, cudaMemcpyDeviceToHost ) );
        HANDLE_ERROR( cudaFree( dev_MEM ) );
        HANDLE_ERROR( cudaFree( dev_IMAGE ) );

        cudaEventElapsedTime( &elapsed_time_ms[data->deviceID], start, stop );          //Calculate elapsed time
        cudaEventDestroy(start);
        cudaEventDestroy(stop);

        printf("Algorithm Elapsed Time : %f ms(Device %d)\n", elapsed_time_ms[data->deviceID], data->deviceID);
        printf("Device %d Complete!\n", data->deviceID);

        return 0;
}

int main( void )
{       
        int i;
        CUTThread thread[7];

        printf("Program Start.\n");                     
        LOAD_VERTEX();

        DataStruct data[DEVICENUM];                     //define device info

        for(i = 0; i < DEVICENUM; i++){
                data[i].deviceID = i;
                thread[i] = start_thread(routine, &(data[i]));
        }

        for(i = 0; i < DEVICENUM; i++){
                end_thread(thread[i]);
        }

        cudaFreeHost(MEM);

    return 0;
}

1 个答案:

答案 0 :(得分:1)

由于您复制了your question from the Nvidia forum,我还会复制my answer

对于你的内核,你可以通过高速缓存溢出来获得更高的占用率来轻松解释性能降低和占用率降低的问题。

完全占用的本地阵列temp[]需要1536×15×4 = 92160字节的高速缓存,而占用率为33%(对于较小的8×8块大小)仅需要512×15×4 = 30720字节每SM需要。使用更大的48kB缓存/ SM设置后者可以完全缓存,几乎完全消除temp[]的片外存储器访问,但即使在默认的16kB缓存/ SM设置中,缓存命中概率也要高得多。

由于无论如何都不需要temp[]数组,最快的选择(任何一个占用)都将完全消除它。如果您只是在初始化循环之前插入#pragma unroll,编译器可能已经能够实现此目的。否则用一点宏或内联函数替换temp[]的所有用法,或者甚至只是将结果替换为代码(在这种情况下,我甚至会发现它更具可读性)。