在任何一群人中都有很多朋友。假设两个分享朋友的人自己就是朋友。 (是的,这在现实生活中是一个不切实际的假设,但让我们做到这一点)。换句话说,如果人A和B是朋友而B是C的朋友,那么A和C也必须是朋友。使用此规则,只要我们了解群组中的友谊,我们就可以将任何一群人划分为友谊圈。
编写一个带有两个参数的函数networks()。第一个参数是组中的人数,第二个参数是定义朋友的元组对象列表。假设人们通过数字0到n-1来识别。例如,元组(0,2)表示人0是人2的朋友。该函数应该将人的分区打印到友谊圈中。以下显示了该函数的几个示例运行:
>>>networks(5,[(0,1),(1,2),(3,4)])#execute
社交网络0是{0,1,2}
社交网络1是{3,4}
老实说,我很遗憾如何启动这个程序,任何提示都会非常感激。
答案 0 :(得分:1)
可用于解决此问题的一种有效数据结构是disjoint set
,也称为union-find
结构。不久前我为another answer写了一个。
这是结构:
class UnionFind:
def __init__(self):
self.rank = {}
self.parent = {}
def find(self, element):
if element not in self.parent: # leader elements are not in `parent` dict
return element
leader = self.find(self.parent[element]) # search recursively
self.parent[element] = leader # compress path by saving leader as parent
return leader
def union(self, leader1, leader2):
rank1 = self.rank.get(leader1,1)
rank2 = self.rank.get(leader2,1)
if rank1 > rank2: # union by rank
self.parent[leader2] = leader1
elif rank2 > rank1:
self.parent[leader1] = leader2
else: # ranks are equal
self.parent[leader2] = leader1 # favor leader1 arbitrarily
self.rank[leader1] = rank1+1 # increment rank
以下是如何使用它来解决您的问题:
def networks(num_people, friends):
# first process the "friends" list to build disjoint sets
network = UnionFind()
for a, b in friends:
network.union(network.find(a), network.find(b))
# now assemble the groups (indexed by an arbitrarily chosen leader)
groups = defaultdict(list)
for person in range(num_people):
groups[network.find(person)].append(person)
# now print out the groups (you can call `set` on `g` if you want brackets)
for i, g in enumerate(groups.values()):
print("Social network {} is {}".format(i, g))
答案 1 :(得分:0)
以下是基于connected components in a graph的解决方案(由@Blckknght建议):
def make_friends_graph(people, friends):
# graph of friends (adjacency lists representation)
G = {person: [] for person in people} # person -> direct friends list
for a, b in friends:
G[a].append(b) # a is friends with b
G[b].append(a) # b is friends with a
return G
def networks(num_people, friends):
direct_friends = make_friends_graph(range(num_people), friends)
seen = set() # already seen people
# person's friendship circle is a person themselves
# plus friendship circles of all their direct friends
# minus already seen people
def friendship_circle(person): # connected component
seen.add(person)
yield person
for friend in direct_friends[person]:
if friend not in seen:
yield from friendship_circle(friend)
# on Python <3.3
# for indirect_friend in friendship_circle(friend):
# yield indirect_friend
# group people into friendship circles
circles = (friendship_circle(person) for person in range(num_people)
if person not in seen)
# print friendship circles
for i, circle in enumerate(circles):
print("Social network %d is {%s}" % (i, ",".join(map(str, circle))))
示例:
networks(5, [(0,1),(1,2),(3,4)])
# -> Social network 0 is {0,1,2}
# -> Social network 1 is {3,4}
答案 2 :(得分:0)
def networks(n,lst):
groups= []
for i in range(n)
groups.append({i})
for pair in lst:
union = groups[pair[0]]|groups[pair[1]]
for p in union:
groups[p]=union
sets= set()
for g in groups:
sets.add(tuple(g))
i=0
for s in sets:
print("network",i,"is",set(s))
i+=1
如果有人关心,这就是我所寻找的。 p>