字符串插值和宏:如何获取StringContext和表达式位置

时间:2013-03-10 23:28:17

标签: scala macros scala-2.10 string-interpolation

我正在尝试使用宏实现自定义字符串插值方法,我需要一些使用API​​的指导。

这是我想要做的:

/** expected
  * LocatedPieces(List(("\nHello ", Place("world"), Position()), 
                       ("\nHow are you, ", Name("Eric"), Position(...)))
  */
val locatedPieces: LocatedPieces = 
  s2"""
    Hello $place

    How are you, $name
    """

val place: Piece = Place("world")
val name: Piece = Name("Eric")

trait Piece
case class Place(p: String) extends Piece
case class Name(n: String) extends Piece

/** sequence of each interpolated Piece object with:
  * the preceding text and its location
  */  
case class LocatedPieces(located: Seq[(String, Piece, Position)]) 

implicit class s2pieces(sc: StringContext) {
  def s2(parts: Piece*) = macro s2Impl
}

def impl(c: Context)(pieces: c.Expr[Piece]*): c.Expr[LocatedPieces] = {
  // I want to build a LocatedPieces object with the positions for all 
  // the pieces + the pieces + the (sc: StringContext).parts
  // with the method createLocatedPieces below
  // ???     
} 

def createLocatedPieces(parts: Seq[String], pieces: Seq[Piece], positions: Seq[Position]):
  LocatedPieces = 
  // zip the text parts, pieces and positions together to create a LocatedPieces object
  ???

我的问题是:

  1. 如何访问宏中的StringContext对象以获取所有StringContext.parts个字符串?

  2. 我如何抓住每件作品的位置?

  3. 如何调用上面的createLocatedPieces方法并重新生成结果以获取宏调用的结果?

1 个答案:

答案 0 :(得分:10)

经过几个小时的努力,我找到了一个可运行的解决方案:

object Macros {

  import scala.reflect.macros.Context
  import language.experimental.macros

  sealed trait Piece
  case class Place(str: String) extends Piece
  case class Name(str: String) extends Piece
  case class Pos(column: Int, line: Int)
  case class LocatedPieces(located: List[(String, Piece, Pos)])

  implicit class s2pieces(sc: StringContext) {
    def s2(pieces: Piece*) = macro s2impl
  }

  // pieces contain all the Piece instances passed inside of the string interpolation
  def s2impl(c: Context)(pieces: c.Expr[Piece]*): c.Expr[LocatedPieces] = {
    import c.universe.{ Name => _, _ }

    c.prefix.tree match {
      // access data of string interpolation
      case Apply(_, List(Apply(_, rawParts))) =>

        // helper methods
        def typeIdent[A : TypeTag] =
          Ident(typeTag[A].tpe.typeSymbol)

        def companionIdent[A : TypeTag] =
          Ident(typeTag[A].tpe.typeSymbol.companionSymbol)

        def identFromString(tpt: String) =
          Ident(c.mirror.staticModule(tpt))

        // We need to translate the data calculated inside of the macro to an AST
        // in order to write it back to the compiler.
        def toAST(any: Any) =
          Literal(Constant(any))

        def toPosAST(column: Tree, line: Tree) =
          Apply(
            Select(companionIdent[Pos], newTermName("apply")),
            List(column, line))

        def toTupleAST(t1: Tree, t2: Tree, t3: Tree) =
          Apply(
            TypeApply(
              Select(identFromString("scala.Tuple3"), newTermName("apply")),
              List(typeIdent[String], typeIdent[Piece], typeIdent[Pos])),
            List(t1, t2, t3))

        def toLocatedPiecesAST(located: Tree) =
          Apply(
            Select(companionIdent[LocatedPieces], newTermName("apply")),
            List(located))

        def toListAST(xs: List[Tree]) =
          Apply(
            TypeApply(
              Select(identFromString("scala.collection.immutable.List"), newTermName("apply")),
              List(AppliedTypeTree(
                typeIdent[Tuple3[String, Piece, Pos]],
                List(typeIdent[String], typeIdent[Piece], typeIdent[Pos])))),
            xs)

        // `parts` contain the strings a string interpolation is built of
        val parts = rawParts map { case Literal(Constant(const: String)) => const }
        // translate compiler positions to a data structure that can live outside of the compiler
        val positions = pieces.toList map (_.tree.pos) map (p => Pos(p.column, p.line))
        // discard last element of parts, `transpose` does not work otherwise
        // trim parts to discard unnecessary white space
        val data = List(parts.init map (_.trim), pieces.toList, positions).transpose
        // create an AST containing a List[(String, Piece, Pos)]
        val tupleAST = data map { case List(part: String, piece: c.Expr[_], Pos(column, line)) =>
          toTupleAST(toAST(part), piece.tree, toPosAST(toAST(column), toAST(line)))
        }
        // create an AST of `LocatedPieces`
        val locatedPiecesAST = toLocatedPiecesAST(toListAST(tupleAST))
        c.Expr(locatedPiecesAST)

      case _ =>
        c.abort(c.enclosingPosition, "invalid")
    }
  }
}

用法:

object StringContextTest {
  val place: Piece = Place("world")
  val name: Piece = Name("Eric")
  val pieces = s2"""
    Hello $place
    How are you, $name?
  """
  pieces.located foreach println
}

结果:

(Hello,Place(world),Pos(12,9))
(How are you,,Name(Eric),Pos(19,10))

我并不认为将所有事情放在一起需要花费很多时间,但这是一个充满乐趣的好时光。我希望代码符合您的要求。如果您需要有关具体事物如何运作的更多信息,请查看其他问题及其答案:

非常感谢Travis Brown(见评论),我有一个更短的编译解决方案:

object Macros {

  import scala.reflect.macros.Context
  import language.experimental.macros

  sealed trait Piece
  case class Place(str: String) extends Piece
  case class Name(str: String) extends Piece
  case class Pos(column: Int, line: Int)
  case class LocatedPieces(located: Seq[(String, Piece, Pos)])

  implicit class s2pieces(sc: StringContext) {
    def s2(pieces: Piece*) = macro s2impl
  }

  def s2impl(c: Context)(pieces: c.Expr[Piece]*): c.Expr[LocatedPieces] = {
    import c.universe.{ Name => _, _ }

    def toAST[A : TypeTag](xs: Tree*): Tree =
      Apply(
        Select(Ident(typeOf[A].typeSymbol.companionSymbol), newTermName("apply")),
        xs.toList)

    val parts = c.prefix.tree match {
      case Apply(_, List(Apply(_, rawParts))) =>
        rawParts zip (pieces map (_.tree)) map {
          case (Literal(Constant(rawPart: String)), piece) =>
            val line = c.literal(piece.pos.line).tree
            val column = c.literal(piece.pos.column).tree
            val part = c.literal(rawPart.trim).tree
            toAST[(_, _, _)](part, piece, toAST[Pos](line, column))
      }
    }
    c.Expr(toAST[LocatedPieces](toAST[Seq[_]](parts: _*)))
  }
}

它抽象了详细的AST结构,它的逻辑有点不同但几乎相同。如果您难以理解代码的工作原理,请首先尝试理解第一个解决方案。它的作用更明确。