将来自设备的磁场X,Y,Z值转换为全局参考系

时间:2013-03-09 19:47:03

标签: android sensor android-sensors magnetometer

当您使用TYPE_MAGNETOMETER传感器时,您将获得相对于设备方向的磁场强度的X,Y,Z值。我想得到的是将这些值转换为全局参考框架,澄清:用户获取设备,测量这些值,而不是将设备旋转任何轴周围一定程度并获得相同的值。 请在下面找到类似的问题: Getting magnetic field values in global coordinates How can I get the magnetic field vector, independent of the device rotation? 在这个答案中描述了样本解决方案(它用于线性加速,但我认为无关紧要):https://stackoverflow.com/a/11614404/2152255 我使用它并且我得到3个值,X总是非常小(不要认为它是正确的),Y和Z都可以,但是当我旋转设备时它们仍然改变了一点。怎么可以调整?它可以全部解决吗?我使用简单的卡尔曼滤波器来近似测量值,因为即使设备根本没有移动/旋转,我也会得到不同的值。请在下面找到我的代码:

import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.opengl.Matrix;
import android.os.Bundle;
import android.view.View;
import android.widget.CheckBox;
import android.widget.TextView;
import com.test.statistics.filter.kalman.KalmanState;
import com.example.R;

/**
 * Activity for gathering magnetic field statistics.
 */
public class MagneticFieldStatisticsGatheringActivity extends Activity implements SensorEventListener {

    public static final int KALMAN_STATE_MAX_SIZE = 80;
    public static final double MEASUREMENT_NOISE = 5;

    /** Sensor manager. */
    private SensorManager mSensorManager;
    /** Magnetometer spec. */
    private TextView vendor;
    private TextView resolution;
    private TextView maximumRange;

    /** Magnetic field coordinates measurements. */
    private TextView magneticXTextView;
    private TextView magneticYTextView;
    private TextView magneticZTextView;

    /** Sensors. */
    private Sensor mAccelerometer;
    private Sensor mGeomagnetic;
    private float[] accelerometerValues;
    private float[] geomagneticValues;

    /** Flags. */
    private boolean specDefined = false;
    private boolean kalmanFiletring = false;

    /** Rates. */
    private float nanoTtoGRate = 0.00001f;
    private final int gToCountRate = 1000000;

    /** Kalman vars. */
    private KalmanState previousKalmanStateX;
    private KalmanState previousKalmanStateY;
    private KalmanState previousKalmanStateZ;
    private int previousKalmanStateCounter = 0;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main2);
        mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

        mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
        mGeomagnetic = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

        vendor = (TextView) findViewById(R.id.vendor);
        resolution = (TextView) findViewById(R.id.resolution);
        maximumRange = (TextView) findViewById(R.id.maximumRange);

        magneticXTextView = (TextView) findViewById(R.id.magneticX);
        magneticYTextView = (TextView) findViewById(R.id.magneticY);
        magneticZTextView = (TextView) findViewById(R.id.magneticZ);

        mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_FASTEST);
        mSensorManager.registerListener(this, mGeomagnetic, SensorManager.SENSOR_DELAY_FASTEST);
    }

    /**
     * Refresh statistics.
     *
     * @param view - refresh button view.
     */
    public void onClickRefreshMagneticButton(View view) {
        resetKalmanFilter();
    }

    /**
     * Switch Kalman filtering on/off
     *
     * @param view - Klaman filetring switcher (checkbox)
     */
    public void onClickKalmanFilteringCheckBox(View view) {
        CheckBox kalmanFiltering = (CheckBox) view;
        this.kalmanFiletring = kalmanFiltering.isChecked();
    }

    @Override
    public void onSensorChanged(SensorEvent sensorEvent) {
        if (sensorEvent.accuracy == SensorManager.SENSOR_STATUS_UNRELIABLE) {
            return;
        }
        synchronized (this) {
            switch(sensorEvent.sensor.getType()){
                case Sensor.TYPE_ACCELEROMETER:
                    accelerometerValues = sensorEvent.values.clone();
                    break;
                case Sensor.TYPE_MAGNETIC_FIELD:
                    if (!specDefined) {
                        vendor.setText("Vendor: " + sensorEvent.sensor.getVendor() + " " + sensorEvent.sensor.getName());
                        float resolutionValue = sensorEvent.sensor.getResolution() * nanoTtoGRate;
                        resolution.setText("Resolution: " + resolutionValue);
                        float maximumRangeValue = sensorEvent.sensor.getMaximumRange() * nanoTtoGRate;
                        maximumRange.setText("Maximum range: " + maximumRangeValue);
                    }
                    geomagneticValues = sensorEvent.values.clone();
                    break;
            }
            if (accelerometerValues != null && geomagneticValues != null) {
                float[] Rs = new float[16];
                float[] I = new float[16];

                if (SensorManager.getRotationMatrix(Rs, I, accelerometerValues, geomagneticValues)) {

                    float[] RsInv = new float[16];
                    Matrix.invertM(RsInv, 0, Rs, 0);

                    float resultVec[] = new float[4];
                    float[] geomagneticValuesAdjusted = new float[4];
                    geomagneticValuesAdjusted[0] = geomagneticValues[0];
                    geomagneticValuesAdjusted[1] = geomagneticValues[1];
                    geomagneticValuesAdjusted[2] = geomagneticValues[2];
                    geomagneticValuesAdjusted[3] = 0;
                    Matrix.multiplyMV(resultVec, 0, RsInv, 0, geomagneticValuesAdjusted, 0);

                    for (int i = 0; i < resultVec.length; i++) {
                        resultVec[i] = resultVec[i] * nanoTtoGRate * gToCountRate;
                    }

                    if (kalmanFiletring) {

                        KalmanState currentKalmanStateX = new KalmanState(MEASUREMENT_NOISE, accelerometerValues[0], (double)resultVec[0], previousKalmanStateX);
                        previousKalmanStateX = currentKalmanStateX;

                        KalmanState currentKalmanStateY = new KalmanState(MEASUREMENT_NOISE, accelerometerValues[1], (double)resultVec[1], previousKalmanStateY);
                        previousKalmanStateY = currentKalmanStateY;

                        KalmanState currentKalmanStateZ = new KalmanState(MEASUREMENT_NOISE, accelerometerValues[2], (double)resultVec[2], previousKalmanStateZ);
                        previousKalmanStateZ = currentKalmanStateZ;

                        if (previousKalmanStateCounter == KALMAN_STATE_MAX_SIZE) {
                            magneticXTextView.setText("x: " + previousKalmanStateX.getX_estimate());
                            magneticYTextView.setText("y: " + previousKalmanStateY.getX_estimate());
                            magneticZTextView.setText("z: " + previousKalmanStateZ.getX_estimate());

                            resetKalmanFilter();
                        } else {
                            previousKalmanStateCounter++;
                        }

                    } else {
                        magneticXTextView.setText("x: " + resultVec[0]);
                        magneticYTextView.setText("y: " + resultVec[1]);
                        magneticZTextView.setText("z: " + resultVec[2]);
                    }
                }
            }
        }
    }

    private void resetKalmanFilter() {
        previousKalmanStateX = null;
        previousKalmanStateY = null;
        previousKalmanStateZ = null;
        previousKalmanStateCounter = 0;
    }

    @Override
    public void onAccuracyChanged(Sensor sensor, int i) {
    }
}

感谢所有阅读此帖的人,并提前发布了有关该问题的一些想法。

2 个答案:

答案 0 :(得分:6)

根据上述说明,请执行此操作

private static final int TEST_GRAV = Sensor.TYPE_ACCELEROMETER;
private static final int TEST_MAG = Sensor.TYPE_MAGNETIC_FIELD;
private final float alpha = (float) 0.8;
private float gravity[] = new float[3];
private float magnetic[] = new float[3];

public void onSensorChanged(SensorEvent event) {
    Sensor sensor = event.sensor;
    if (sensor.getType() == TEST_GRAV) {
            // Isolate the force of gravity with the low-pass filter.
              gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
              gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
              gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
    } else if (sensor.getType() == TEST_MAG) {

            magnetic[0] = event.values[0];
            magnetic[1] = event.values[1];
            magnetic[2] = event.values[2];

            float[] R = new float[9];
            float[] I = new float[9];
            SensorManager.getRotationMatrix(R, I, gravity, magnetic);
            float [] A_D = event.values.clone();
            float [] A_W = new float[3];
            A_W[0] = R[0] * A_D[0] + R[1] * A_D[1] + R[2] * A_D[2];
            A_W[1] = R[3] * A_D[0] + R[4] * A_D[1] + R[5] * A_D[2];
            A_W[2] = R[6] * A_D[0] + R[7] * A_D[1] + R[8] * A_D[2];

            Log.d("Field","\nX :"+A_W[0]+"\nY :"+A_W[1]+"\nZ :"+A_W[2]);

        }
    }

答案 1 :(得分:0)

Stochastically给出了一个答案,我觉得比这里发布的要好。

https://stackoverflow.com/a/16418016/4033525

似乎 ## Add an 'id' so we know which points go into which polygons df1$id <- 1:nrow( df1 ) dt <- as.data.table( df1 ) dt <- melt(dt, id.vars = c("id"), measure.vars = names(dt)[grepl("\\.l", names( dt ) )]) ## Because youre columns are named 'p1., p2., p3.' we can use the number to put the points ## in the correct order dt[, point_sequence := gsub("[^0-9]","",variable)] ## and remove the p1. bits dt[, lonlat := gsub("p[0-9]\\.", "", variable)] setorder( dt, id, point_sequence ) ## reshape again to have separate lon & lat columns ## I'm doing this using a 'join' in data.table dt <- dt[ lonlat == "lon", .(id, point_sequence, value) ][ dt[ lonlat == "lat", .(id, point_sequence, value) ] , on = .(id, point_sequence) , nomatch = 0 ] setnames( dt, c("value", "i.value"), c("lon", "lat")) sf_poly <- sfheaders::sf_polygon( obj = dt , x = "lon" , y = "lat" , polygon_id = "id" ) sf::st_crs( sf_poly ) <- 4326 sf_poly # Simple feature collection with 6 features and 1 field # geometry type: POLYGON # dimension: XY # bbox: xmin: 0.8662118 ymin: 51.28801 xmax: 0.8662981 ymax: 51.28808 # geographic CRS: WGS 84 # id geometry # 1 1 POLYGON ((0.8662675 51.2880... # 2 2 POLYGON ((0.866261 51.28806... # 3 3 POLYGON ((0.866255 51.28805... # 4 4 POLYGON ((0.8662485 51.2880... # 5 5 POLYGON ((0.866242 51.28803... # 6 6 POLYGON ((0.866236 51.28802... ## If you want the 'Value' column put back on sf::st_geometry( df1 ) <- NULL sf_poly <- merge( x = sf_poly , y = as.data.frame( df1[, c("id", "Value")] ) , by = "id" ) 无法正确转换为世界框架。

正确的代码是:

SensorManager.getOrientation()