我使用mergesort编写反转计数代码,但因为输入是一个大的const
int数组,如何让它更快?(让o(nlogn)的系数变小?)
是否有一些代码提示可以做到?
提前谢谢。#include<iostream>
using namespace std;
int invCount(int*, int);
int merge(int*, int*, int, int*, int);
int NumberOfInversion(const int*, int);
int main(void){
const int array[] = {0, 1, 4, 3, 2};
cout << NumberOfInversion(array, 5) << "times" << endl;
return 0;
}
int invCount(int *array, int length){
if(length <= 1)return 0;
int middle = (length + 1) / 2;
int left[middle];
int right[length - middle];
for(int i = 0; i < middle; i ++)left[i] = array[i];
for(int i = middle; i < length; i ++)right[i - middle] = array[i];
return invCount(left, middle) + invCount(right, length - middle
) + merge(array, left, middle, right, length - middle);
}
int merge(int* array, int* left, int leftLength, int* right, int rightLength){
int i = 0, j = 0, count = 0;
while(i < leftLength && j < rightLength){
if (left[i] <= right[j]){
array[i + j] = left[i];
i ++;
}
else {
array[i + j] = right[j];
j ++;
count += leftLength - i;
}
}
if(i == leftLength){
while(j < rightLength){
array[i + j] = right[j];
j ++;
}
}
else{
while(i < leftLength){
array[i + j] = left[i];
i ++;
}
}
return count;
}
int NumberOfInversion(const int *A, int N)
{
int input[N];
for(int i = 0; i < N; i ++)input[i] = A[i];
int result = invCount(input, N);
return result;
}
ps:所有可能的对中约有20%被反转
答案 0 :(得分:2)
以下是计数反转的C代码
#include <stdio.h>
#include <stdlib.h>
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the
number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
int *temp = (int *)malloc(sizeof(int)*array_size);
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left)
{
/* Divide the array into two parts and call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left)/2;
/* Inversion count will be sum of inversions in left-part, right-part
and number of inversions in merging */
inv_count = _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid+1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid+1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays and returns inversion count in
the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* i is index for right subarray*/
k = left; /* i is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right))
{
if (arr[i] <= arr[j])
{
temp[k++] = arr[i++];
}
else
{
temp[k++] = arr[j++];
/*this is tricky -- see above explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i=left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
/* Driver progra to test above functions */
int main(int argv, char** args)
{
int arr[] = {1, 20, 6, 4, 5};
printf(" Number of inversions are %d \n", mergeSort(arr, 5));
getchar();
return 0;
}