8个具有重复节点的平铺解算器 - Python

时间:2013-03-06 17:03:22

标签: python depth-first-search breadth-first-search heuristics solver

我正试图使用​​曼哈顿距离作为我的启发式解决方案,使用BFS搜索,DFS,贪婪和A *等技术来解决8tile难题。

问题在于,虽然我可以解决一些问题,但问题在于一些谜题,可能会发生我扩展父节点的孩子已经在旧节点中。

我不知道我是否能够很好地解释自己,但我的主要问题是我试图看到我创建的新节点是否已经在旧节点上的所有内容。

有了这个问题,我通常会进入深度9,然后我的程序不会提前或给出解决方案。

我的一个想法是使用代码:

if node in prev:
    continue
prev.append(node)

但我猜我走错了路。

我在python上这样做,这是我的代码,万一有人可以帮助我。

#!/usr/bin/python

import sys
import copy


class Board:
    def __init__(self, matrix, whitepos=None):
        self.matrix = matrix
        self.whitepos = whitepos
        if not whitepos:
            for y in xrange(3):
                for x in xrange(3):
                    if board[y][x] == 0:
                        self.whitepos = (x, y)


def is_final_state(board):
    final = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
    for y in xrange(3):
        for x in xrange(3):
            if board.matrix[y][x] != final[y][x]:
                return False
    return True


def get_whitepos(board):
    return board.whitepos


def move(board, x, y, dx, dy):
    b = copy.deepcopy(board.matrix)
    b[y][x] = b[y + dy][x + dx]
    b[y + dy][x + dx] = 0
    return Board(b, (x + dx, y + dy))


def manhattan_heur(board):
    finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
                (0, 1)]
    cost = 0
    for y in xrange(3):
        for x in xrange(3):
            t = board.matrix[y][x]
            xf, yf = finalpos[t]
            cost += abs(xf - x) + abs(yf - y)
    return cost


def wrongplace_heur(board):
    finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
                (0, 1)]
    cost = 0
    for y in xrange(3):
        for x in xrange(3):
            t = board.matrix[y][x]
            if finalpos[t] != (x, y):
                cost += 1
    return cost


def heuristic(board):
    return manhattan_heur(board)


class Node:
    def __init__(self, board, parent):
        self.state = board
        self.parent = parent
        if not parent:
            self.g = 0
        else:
            self.g = parent.g + 1
        self.h = heuristic(board)

    def test_goal(self):
        return is_final_state(self.state)

    def expand(self):
        children = []
        b = self.state
        x, y = get_whitepos(b)
        if x > 0:
            children.append(Node(move(b, x, y, -1, 0), self))
        if x < 2:
            children.append(Node(move(b, x, y, +1, 0), self))
        if y > 0:
            children.append(Node(move(b, x, y, 0, -1), self))
        if y < 2:
            children.append(Node(move(b, x, y, 0, +1), self))
        return children


class Solution:
    def __init__(self, node, mem_needed, steps):
        self.node = node
        self.mem_needed = mem_needed
        self.iterations = steps

    def inc(self, other):
        self.node = other.node
        self.mem_needed = max(self.mem_needed, other.mem_needed)
        self.iterations += other.iterations


def search(board, queue_fn, queue_arg=None):
    max_nodes = 1
    steps = 0
    nodes = [Node(Board(board), None)]
    prev = []
    depth = 0
    while nodes:
        node = nodes.pop(0)

        if node.g > depth:
            depth = node.g
            print depth

        if node in prev:
            continue
        prev.append(node)

        if node.test_goal():
            return Solution(node, max_nodes, steps)
        new_nodes = node.expand()
        nodes = queue_fn(nodes, new_nodes, queue_arg)

        max_nodes = max(max_nodes, len(nodes))
        steps += 1
    return Solution(None, max_nodes, steps)


def fifo_queue(nodes, new_nodes, _):
    nodes.extend(new_nodes)
    return nodes


def bl_search(board):
    return search(board, fifo_queue)


def lifo_queue(nodes, new_nodes, _):
    new_nodes.extend(nodes)
    return new_nodes


def dfs_search(board):
    return search(board, lifo_queue)


def bpl_queue(nodes, new_nodes, max_depth):
    def f(n):
        return n.g <= max_depth

    new_nodes = filter(f, new_nodes)
    new_nodes.extend(nodes)
    return new_nodes


def bpi_search(board):
    solution = Solution(None, 0, 0)
    for max_depth in xrange(0, sys.maxint):
        sol = search(board, bpl_queue, max_depth)
        solution.inc(sol)
        if solution.node:
            return solution


def sort_queue(nodes, new_nodes, cmp):
    nodes.extend(new_nodes)
    nodes.sort(cmp)
    return nodes


def guloso2_search(board):
    def cmp(n1, n2):
        return n1.h - n2.h

    return search(board, sort_queue, cmp)


def astar_search(board):
    def cmp(n1, n2):
        return (n1.g + n1.h) - (n2.g + n2.h)

    return search(board, sort_queue, cmp)


def print_solution(search, sol):
    print
    print "*", search
    node = sol.node
    if node:
        print "moves:", node.g
        while node:
            print "\t", node.state.matrix
            node = node.parent
    else:
        print "no solution found"
    print "nodes needed:", sol.mem_needed
    print "iterations:  ", sol.iterations


board = [[6, 5, 7], [2, 0, 1], [8, 4, 3]]

print_solution("bl", bl_search(board))
print_solution("dfs", dfs_search(board))
print_solution("bpi", bpi_search(board))
print_solution("guloso2", guloso2_search(board))
print_solution("astar", astar_search(board))

1 个答案:

答案 0 :(得分:2)

看起来你正确的方式,但你需要在Node类中定义__eq____ne__方法;否则node in prev将始终返回False,因为Python不知道如何将node与列表中的项进行比较。查看Python data model documentation,了解有关比较如何处理用户定义类型的更多信息。

我抓住你的代码并添加了几个(非常天真的)方法来进行相等性检查,它似乎不再挂起。值得注意的是,您的类应该从基类object继承(见下文)。这些是我所做的改变(在上下文中):

class Board(object):
    def __init__(self, matrix, whitepos=None):
        self.matrix = matrix
        self.whitepos = whitepos
        if not whitepos:
            for y in xrange(3):
                for x in xrange(3):
                    if board[y][x] == 0:
                        self.whitepos = (x, y)
    def __eq__(self, o):
        # Note that comparing whitepos is not strictly necessary; but I left 
        # it in as a safety measure in case the board state gets corrupted.
        # If speed becomes an issue, take it out.
        return (self.matrix, self.whitepos) == (o.matrix, o.whitepos)

class Node(object):
    def __init__(self, board, parent):
        self.state = board
        self.parent = parent
        if not parent:
            self.g = 0
        else:
            self.g = parent.g + 1
        self.h = heuristic(board)

    def test_goal(self):
        return is_final_state(self.state)

    def expand(self):
        children = []
        b = self.state
        x, y = get_whitepos(b)
        if x > 0:
            children.append(Node(move(b, x, y, -1, 0), self))
        if x < 2:
            children.append(Node(move(b, x, y, +1, 0), self))
        if y > 0:
            children.append(Node(move(b, x, y, 0, -1), self))
        if y < 2:
            children.append(Node(move(b, x, y, 0, +1), self))
        return children

    def __eq__(self, o):
        # Note that you don't have to compare parents, since your goal
        # is to eliminate ANY nodes with the same position.
        return self.state == o.state

class Solution(object):
    def __init__(self, node, mem_needed, steps):
        self.node = node
        self.mem_needed = mem_needed
        self.iterations = steps

    def inc(self, other):
        self.node = other.node
        self.mem_needed = max(self.mem_needed, other.mem_needed)
        self.iterations += other.iterations

#...

print_solution("bl", bl_search(board))
# I commented out all but the first search to avoid cluttering up the output.

通过这些更改,代码确实产生了一个解决方案(我将由您来验证它是否正确,但这是我的输出)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

* bl
moves: 20
    [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
    [[1, 2, 3], [8, 6, 4], [7, 0, 5]]
    [[1, 2, 3], [8, 6, 4], [0, 7, 5]]
    [[1, 2, 3], [0, 6, 4], [8, 7, 5]]
    [[1, 2, 3], [6, 0, 4], [8, 7, 5]]
    [[1, 0, 3], [6, 2, 4], [8, 7, 5]]
    [[0, 1, 3], [6, 2, 4], [8, 7, 5]]
    [[6, 1, 3], [0, 2, 4], [8, 7, 5]]
    [[6, 1, 3], [2, 0, 4], [8, 7, 5]]
    [[6, 1, 3], [2, 7, 4], [8, 0, 5]]
    [[6, 1, 3], [2, 7, 4], [8, 5, 0]]
    [[6, 1, 3], [2, 7, 0], [8, 5, 4]]
    [[6, 1, 0], [2, 7, 3], [8, 5, 4]]
    [[6, 0, 1], [2, 7, 3], [8, 5, 4]]
    [[6, 7, 1], [2, 0, 3], [8, 5, 4]]
    [[6, 7, 1], [2, 5, 3], [8, 0, 4]]
    [[6, 7, 1], [2, 5, 3], [8, 4, 0]]
    [[6, 7, 1], [2, 5, 0], [8, 4, 3]]
    [[6, 7, 0], [2, 5, 1], [8, 4, 3]]
    [[6, 0, 7], [2, 5, 1], [8, 4, 3]]
    [[6, 5, 7], [2, 0, 1], [8, 4, 3]]
nodes needed: 44282
iterations:   59930

希望这有帮助!