我正试图使用曼哈顿距离作为我的启发式解决方案,使用BFS搜索,DFS,贪婪和A *等技术来解决8tile难题。
问题在于,虽然我可以解决一些问题,但问题在于一些谜题,可能会发生我扩展父节点的孩子已经在旧节点中。
我不知道我是否能够很好地解释自己,但我的主要问题是我试图看到我创建的新节点是否已经在旧节点上的所有内容。
有了这个问题,我通常会进入深度9,然后我的程序不会提前或给出解决方案。
我的一个想法是使用代码:
if node in prev:
continue
prev.append(node)
但我猜我走错了路。
我在python上这样做,这是我的代码,万一有人可以帮助我。
#!/usr/bin/python
import sys
import copy
class Board:
def __init__(self, matrix, whitepos=None):
self.matrix = matrix
self.whitepos = whitepos
if not whitepos:
for y in xrange(3):
for x in xrange(3):
if board[y][x] == 0:
self.whitepos = (x, y)
def is_final_state(board):
final = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
for y in xrange(3):
for x in xrange(3):
if board.matrix[y][x] != final[y][x]:
return False
return True
def get_whitepos(board):
return board.whitepos
def move(board, x, y, dx, dy):
b = copy.deepcopy(board.matrix)
b[y][x] = b[y + dy][x + dx]
b[y + dy][x + dx] = 0
return Board(b, (x + dx, y + dy))
def manhattan_heur(board):
finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
(0, 1)]
cost = 0
for y in xrange(3):
for x in xrange(3):
t = board.matrix[y][x]
xf, yf = finalpos[t]
cost += abs(xf - x) + abs(yf - y)
return cost
def wrongplace_heur(board):
finalpos = [(1, 1), (0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2),
(0, 1)]
cost = 0
for y in xrange(3):
for x in xrange(3):
t = board.matrix[y][x]
if finalpos[t] != (x, y):
cost += 1
return cost
def heuristic(board):
return manhattan_heur(board)
class Node:
def __init__(self, board, parent):
self.state = board
self.parent = parent
if not parent:
self.g = 0
else:
self.g = parent.g + 1
self.h = heuristic(board)
def test_goal(self):
return is_final_state(self.state)
def expand(self):
children = []
b = self.state
x, y = get_whitepos(b)
if x > 0:
children.append(Node(move(b, x, y, -1, 0), self))
if x < 2:
children.append(Node(move(b, x, y, +1, 0), self))
if y > 0:
children.append(Node(move(b, x, y, 0, -1), self))
if y < 2:
children.append(Node(move(b, x, y, 0, +1), self))
return children
class Solution:
def __init__(self, node, mem_needed, steps):
self.node = node
self.mem_needed = mem_needed
self.iterations = steps
def inc(self, other):
self.node = other.node
self.mem_needed = max(self.mem_needed, other.mem_needed)
self.iterations += other.iterations
def search(board, queue_fn, queue_arg=None):
max_nodes = 1
steps = 0
nodes = [Node(Board(board), None)]
prev = []
depth = 0
while nodes:
node = nodes.pop(0)
if node.g > depth:
depth = node.g
print depth
if node in prev:
continue
prev.append(node)
if node.test_goal():
return Solution(node, max_nodes, steps)
new_nodes = node.expand()
nodes = queue_fn(nodes, new_nodes, queue_arg)
max_nodes = max(max_nodes, len(nodes))
steps += 1
return Solution(None, max_nodes, steps)
def fifo_queue(nodes, new_nodes, _):
nodes.extend(new_nodes)
return nodes
def bl_search(board):
return search(board, fifo_queue)
def lifo_queue(nodes, new_nodes, _):
new_nodes.extend(nodes)
return new_nodes
def dfs_search(board):
return search(board, lifo_queue)
def bpl_queue(nodes, new_nodes, max_depth):
def f(n):
return n.g <= max_depth
new_nodes = filter(f, new_nodes)
new_nodes.extend(nodes)
return new_nodes
def bpi_search(board):
solution = Solution(None, 0, 0)
for max_depth in xrange(0, sys.maxint):
sol = search(board, bpl_queue, max_depth)
solution.inc(sol)
if solution.node:
return solution
def sort_queue(nodes, new_nodes, cmp):
nodes.extend(new_nodes)
nodes.sort(cmp)
return nodes
def guloso2_search(board):
def cmp(n1, n2):
return n1.h - n2.h
return search(board, sort_queue, cmp)
def astar_search(board):
def cmp(n1, n2):
return (n1.g + n1.h) - (n2.g + n2.h)
return search(board, sort_queue, cmp)
def print_solution(search, sol):
print
print "*", search
node = sol.node
if node:
print "moves:", node.g
while node:
print "\t", node.state.matrix
node = node.parent
else:
print "no solution found"
print "nodes needed:", sol.mem_needed
print "iterations: ", sol.iterations
board = [[6, 5, 7], [2, 0, 1], [8, 4, 3]]
print_solution("bl", bl_search(board))
print_solution("dfs", dfs_search(board))
print_solution("bpi", bpi_search(board))
print_solution("guloso2", guloso2_search(board))
print_solution("astar", astar_search(board))
答案 0 :(得分:2)
看起来你正确的方式,但你需要在Node类中定义__eq__
和__ne__
方法;否则node in prev
将始终返回False
,因为Python不知道如何将node
与列表中的项进行比较。查看Python data model documentation,了解有关比较如何处理用户定义类型的更多信息。
我抓住你的代码并添加了几个(非常天真的)方法来进行相等性检查,它似乎不再挂起。值得注意的是,您的类应该从基类object
继承(见下文)。这些是我所做的改变(在上下文中):
class Board(object):
def __init__(self, matrix, whitepos=None):
self.matrix = matrix
self.whitepos = whitepos
if not whitepos:
for y in xrange(3):
for x in xrange(3):
if board[y][x] == 0:
self.whitepos = (x, y)
def __eq__(self, o):
# Note that comparing whitepos is not strictly necessary; but I left
# it in as a safety measure in case the board state gets corrupted.
# If speed becomes an issue, take it out.
return (self.matrix, self.whitepos) == (o.matrix, o.whitepos)
class Node(object):
def __init__(self, board, parent):
self.state = board
self.parent = parent
if not parent:
self.g = 0
else:
self.g = parent.g + 1
self.h = heuristic(board)
def test_goal(self):
return is_final_state(self.state)
def expand(self):
children = []
b = self.state
x, y = get_whitepos(b)
if x > 0:
children.append(Node(move(b, x, y, -1, 0), self))
if x < 2:
children.append(Node(move(b, x, y, +1, 0), self))
if y > 0:
children.append(Node(move(b, x, y, 0, -1), self))
if y < 2:
children.append(Node(move(b, x, y, 0, +1), self))
return children
def __eq__(self, o):
# Note that you don't have to compare parents, since your goal
# is to eliminate ANY nodes with the same position.
return self.state == o.state
class Solution(object):
def __init__(self, node, mem_needed, steps):
self.node = node
self.mem_needed = mem_needed
self.iterations = steps
def inc(self, other):
self.node = other.node
self.mem_needed = max(self.mem_needed, other.mem_needed)
self.iterations += other.iterations
#...
print_solution("bl", bl_search(board))
# I commented out all but the first search to avoid cluttering up the output.
通过这些更改,代码确实产生了一个解决方案(我将由您来验证它是否正确,但这是我的输出)。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
* bl
moves: 20
[[1, 2, 3], [8, 0, 4], [7, 6, 5]]
[[1, 2, 3], [8, 6, 4], [7, 0, 5]]
[[1, 2, 3], [8, 6, 4], [0, 7, 5]]
[[1, 2, 3], [0, 6, 4], [8, 7, 5]]
[[1, 2, 3], [6, 0, 4], [8, 7, 5]]
[[1, 0, 3], [6, 2, 4], [8, 7, 5]]
[[0, 1, 3], [6, 2, 4], [8, 7, 5]]
[[6, 1, 3], [0, 2, 4], [8, 7, 5]]
[[6, 1, 3], [2, 0, 4], [8, 7, 5]]
[[6, 1, 3], [2, 7, 4], [8, 0, 5]]
[[6, 1, 3], [2, 7, 4], [8, 5, 0]]
[[6, 1, 3], [2, 7, 0], [8, 5, 4]]
[[6, 1, 0], [2, 7, 3], [8, 5, 4]]
[[6, 0, 1], [2, 7, 3], [8, 5, 4]]
[[6, 7, 1], [2, 0, 3], [8, 5, 4]]
[[6, 7, 1], [2, 5, 3], [8, 0, 4]]
[[6, 7, 1], [2, 5, 3], [8, 4, 0]]
[[6, 7, 1], [2, 5, 0], [8, 4, 3]]
[[6, 7, 0], [2, 5, 1], [8, 4, 3]]
[[6, 0, 7], [2, 5, 1], [8, 4, 3]]
[[6, 5, 7], [2, 0, 1], [8, 4, 3]]
nodes needed: 44282
iterations: 59930
希望这有帮助!