我基本上试图通过在Hadoop上扩展它来实现推荐系统。
在第一步中,我试图计算输入文件中每对项目之间的相似性。如果我将其存储为
{项目A,项目B,相似性}
输出文件大小变得非常大(对于60kb输入,我的输出文件大小为6mb)。
因此我认为将结果存储在python dict中是否会更好,并且在整个map reduce程序结束后只打印dict一次。我没有成功这样做请帮帮我。
我的python代码是:
#!/usr/bin/env python
from mrjob.job import MRJob
from math import sqrt
from itertools import combinations
PRIOR_COUNT = 10
PRIOR_CORRELATION = 0
prefs={}
def correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared):
'''
The correlation between two vectors A, B is
[n * dotProduct(A, B) - sum(A) * sum(B)] /
sqrt{ [n * norm(A)^2 - sum(A)^2] [n * norm(B)^2 - sum(B)^2] }
'''
numerator = size * dot_product - rating_sum * rating2sum
denominator = sqrt(size * rating_norm_squared - rating_sum * rating_sum) * \
sqrt(size * rating2_norm_squared - rating2sum * rating2sum)
return (numerator / (float(denominator))) if denominator else 0.0
def regularized_correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared,
virtual_cont, prior_correlation):
'''
The Regularized Correlation between two vectors A, B
RegularizedCorrelation = w * ActualCorrelation + (1 - w) * PriorCorrelation
where w = # actualPairs / (# actualPairs + # virtualPairs).
'''
unregularizedCorrelation = correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared)
w = size / float(size + virtual_cont)
return w * unregularizedCorrelation + (1.0 - w) * prior_correlation
class SemicolonValueProtocol(object):
# don't need to implement read() since we aren't using it
def write(self, key, values):
return ';'.join(str(v) for v in values)
class BooksSimilarities(MRJob):
#OUTPUT_PROTOCOL = SemicolonValueProtocol
def steps(self):
return [
self.mr(mapper=self.group_by_user_rating,
reducer=self.count_ratings_users_freq),
self.mr(mapper=self.pairwise_items,
reducer=self.calculate_similarity),
self.mr(mapper=self.calculate_ranking,
reducer=self.top_similar_items)]
def group_by_user_rating(self, key, line):
'''
Emit the user_id and group by their ratings (item and rating)
17 70,3
35 21,1
49 19,2
49 21,1
49 70,4
87 19,1
87 21,2
98 19,2
'''
line=line.replace("\"","");
user_id, item_id, rating = line.split(',')
yield user_id, (item_id, float(rating))
def count_ratings_users_freq(self, user_id, values):
'''
For each user, emit a row containing their "postings"
(item,rating pairs)
Also emit user rating sum and count for use later steps.
17 1,3,(70,3)
35 1,1,(21,1)
49 3,7,(19,2 21,1 70,4)
87 2,3,(19,1 21,2)
98 1,2,(19,2)
'''
item_count = 0
item_sum = 0
final = []
for item_id, rating in values:
item_count += 1
item_sum += rating
final.append((item_id, rating))
yield user_id, (item_count, item_sum, final)
def pairwise_items(self, user_id, values):
'''
The output drops the user from the key entirely, instead it emits
the pair of items as the key:
19,21 2,1
19,70 2,4
21,70 1,4
19,21 1,2
'''
item_count, item_sum, ratings = values
for item1, item2 in combinations(ratings, 2):
yield (item1[0], item2[0]), (item1[1], item2[1])
def calculate_similarity(self, pair_key, lines):
'''
Sum components of each corating pair across all users who rated both
item x and item y, then calculate pairwise pearson similarity and
corating counts. The similarities are normalized to the [0,1] scale
because we do a numerical sort.
19,21 0.4,2
21,19 0.4,2
19,70 0.6,1
70,19 0.6,1
21,70 0.1,1
70,21 0.1,1
'''
sum_xx, sum_xy, sum_yy, sum_x, sum_y, n = (0.0, 0.0, 0.0, 0.0, 0.0, 0)
item_pair, co_ratings = pair_key, lines
item_xname, item_yname = item_pair
for item_x, item_y in lines:
sum_xy += item_x * item_y
sum_y += item_y
sum_x += item_x
sum_xx += item_x * item_x
sum_yy += item_y * item_y
n += 1
reg_corr_sim = regularized_correlation(n, sum_xy, sum_x, \
sum_y, sum_xx, sum_yy, PRIOR_COUNT, PRIOR_CORRELATION)
yield (item_xname, item_yname), (reg_corr_sim, n)
def calculate_ranking(self, item_keys, values):
'''
Emit items with similarity in key for ranking:
19,0.4 70,1
19,0.6 21,2
21,0.6 19,2
21,0.9 70,1
70,0.4 19,1
70,0.9 21,1
'''
reg_corr_sim, n = values
item_x, item_y = item_keys
if int(n) > 0:
yield (item_x, reg_corr_sim),(item_y, n)
def top_similar_items(self, key_sim, similar_ns):
'''
For each item emit K closest items in comma separated file:
De La Soul;A Tribe Called Quest;0.6;1
De La Soul;2Pac;0.4;2
'''
item_x, reg_corr_sim = key_sim
for item_y, n in similar_ns:
#yield None, (item_x, item_y, reg_corr_sim, n)
prefs.setdefault(item_x,{})
prefs[item_x][item_y] = float(reg_corr_sim)
prefs.setdefault(item_y,{})
prefs[item_y][item_x] = float(reg_corr_sim)
print "exiting"
if __name__ == '__main__':
BooksSimilarities.run()
执行
后我想要的是什么python thisfile.py< input.csv -r hadoop> output.txt的
是一个相对较小的输出文件,没有重复和一个字典。
简而言之,
目前此程序打印退出 n次,但我希望它只打印ONCE。
除此之外,有更好的方法通过以更好的方式扩展hadoop来实现协同过滤。
提前感谢。
答案 0 :(得分:0)
您只能保证具有相同键的值将转到同一个reducer。因此,如果您在群集上运行多个Reducer,则工作会分开,并且您将有许多“退出”,因为reducers会在所有键上完成任务。
尝试在本地运行并验证其是否正常工作: python thisfile.py< input.csv> output.txt的
也许你可以在你的steps()中定义一个“reducer_final”来获得所有最后一步的reducer输出和管理你想要的。
检查:http://pythonhosted.org/mrjob/job.html#mrjob.job.MRJob.steps
亲切的问候,