重载运算符很可能无法正常工作

时间:2013-03-05 03:15:38

标签: c++ pointers operator-overloading dijkstra binary-heap

你们可以查看我的函数somethingWrong()和我的重载操作符。 有时当我运行函数somethingwrong()时,我得到“真”,有时“假”。 我没有改变什么,为什么会发生这种情况?

这是我正在使用的Dijkstra算法图。

谢谢

main.cpp中:

#include <iostream>
#include <fstream>
#include "graph.h"

using namespace std;

int main(){
    //
    graph g;

    g.addVertices();
    //g.printAll();
    g.addEdges();
    cout << "Hello" << endl;
    //g.printAdjList(5.74);
    //g.DJAlgorithm();
    g.somethingWrong();
    return 0;
}

graph.h

#include <iostream>
#include <list>
#include <fstream>
#include "minHeap.h"

using namespace std;

class graph{
protected:
    class vertex{
    public:
        int x;
        int y;
        double cost;
        double weight;
        vertex * parent;

        list<vertex*> adjacencyList;

        vertex(int xc, int yc, double c){
            x = xc;
            y = yc;
            cost = c;
            weight = -1;
            parent = NULL;
        }

        // operator overloading
        // dont know if to add =
        vertex & vertex::operator=(vertex * z){
            return *z;
        }

        bool vertex::operator==(vertex * z){
            return (this->weight == z->weight);
        }

        bool vertex::operator!=(vertex * z){
            return (this->weight != z->weight);
        }

        bool vertex::operator<=(vertex * z){
            return (this->weight <= z->weight);
        }

        bool vertex::operator<(vertex * z){
            return (this->weight < z->weight);
        }

        bool vertex::operator>=(vertex * z){
            return (this->weight >= z->weight);
        }

        bool vertex::operator>(vertex * z){
            return (this->weight > z->weight);
        }


    };

    list<vertex*> vertexList;
    int numOfVertices;



public:
    int sX;
    int sY;
    int eX;
    int eY;


    graph(){
        numOfVertices = 0;
    }

    void somethingWrong(){
        vertex  *dog = new vertex(0,0,0);
        vertex * cat = new vertex(0,0,0);
        dog->weight = 5;
        cat->weight = 9;
        if(dog < cat){
        cout << "True" << endl;
        }
        else{
            cout << "False" << endl;
        }
    }


    void addVertices(){
        ifstream inFile;
        double w;

        int countX = 1;
        int countY = 1;

        inFile.open("grid.txt");
        if(!inFile){
            cout << "Error opening file!" << endl;
            return;
        }

        // get the coordinates of the starting and 
        // ending position
        inFile >> sX;
        inFile >> sY;
        inFile >> eX;
        inFile >> eY;

        // get the grid of data
        while(!inFile.eof()){

            inFile >> w;
            vertexList.push_back(new vertex(countX,countY,w));
            numOfVertices++;
            countX++;

            if(inFile.peek() == '\n'){
                countX = 1;
                countY++;
            }
        }
    }

    void addEdges(){
        for each(vertex * v in vertexList){
            for each(vertex * w in vertexList){
                if(((v->x == w->x) && (abs(v->y - w->y)) == 1) || ((v->y == w->y) && (abs(v->x - w->x) == 1))){
                    v->adjacencyList.push_back(w);
                }
            }
        }
    }

    // prints all the grid, for verification purposes
    void printAll(){
        cout << sX << " " << sY << endl;
        cout << eX << " " << eY << endl;

        for each(vertex * v in vertexList){
            cout << v->x << " " << v->y << " " << v->cost << endl;
        }
    }

    // print a vertex's adjacency list
    void printAdjList(double c){
        for each(vertex * v in vertexList){
            if(v->cost == c){
                for each(vertex * w in v->adjacencyList){
                    cout << w->x << " " << w->y << " " << w->cost << endl;
                }
                return;
            }
        }
    }

    // problelm here

    // prints the path from vertex x
    void printPath(vertex * x){

        if(x != NULL){
            //cout << "sup" << endl;
            printPath(x->parent);
            cout << "(" << x->x << "," << x->y << ") weight: " << x->weight << endl;
        }
    }

    void DJAlgorithm(){

        // min Heap item
        minHeap<vertex*> C(numOfVertices);

        vertex * s;
        vertex * x;
        vertex * e;

        // find required start and end vertices
        for each(vertex * v in vertexList){
            if(v->x == sX && v->y == sY){
                s = v;
            }
            if(v->x == eX && v->y == eY){
                e = v;
            }
        }

        // set up all values
        for each(vertex * v in vertexList){
            v->weight = -1;
            v->parent = NULL;
        }

        s->weight = 0;


        // insert everything in to the queue/minHeap
        for each (vertex * v in vertexList){
            C.insert(v);
        }

        while(!C.empty()){
            x = C.extractMin();
        for each(vertex * v in x->adjacencyList){

            // relax

            // if not discovered
            if(v->weight == -1){


                v->weight = x->weight;
                v->parent = x;

            }

            // if already discovered
            else{

                if(x->weight + v->cost < v->weight){
                    v->weight = x->weight + v->cost;
                    v->parent = x;
                }
            }
        }
    }

    // print out the path back
    printPath(e);
}
};

// min heap data structure

#include <iostream>
using namespace std;


template<class THING>
class minHeap
{
private:
    //array to hold items
    THING * items;
    int n;

    //return index of parent of i
    int parent(int i)
    {
        return (i-1)/2;
    }

    //return index of left child of i
    int lchild(int i)
    {
        return i*2 + 1;
    }

    //return index of right child of i


int rchild(int i)
{
    return i*2 + 2;
}

//return index of smaller child
int minChild(int i)
{
    if( lchild(i) >= n ) //a leaf!
        return i;
    else if( lchild(i) == (n-1) )
        return lchild(i);
    else if( items[lchild(i)] < items[rchild(i)] )
        return lchild(i);
    else
        return rchild(i);
}


//bubble item at index current up tree
//until there's no more violation
void bubbleUp(int current)
{
    // ignoring all these
    if( current == 0 ) //the root! easy!
    {
        //do nothing, done, no violation, base case!
    }
    else if( items[current] >= items[parent(current)] ) //no violation
    {
        //do nothing!, done, go home, base case!
    }
    else
    {
        //step 1: swap current with parent
        swap( items[current], items[parent(current)] );

        //step 2: keep bubbling item up
        bubbleUp( parent(current) );
    }
}

void bubbleDown(int current)
{
    if( lchild(current) >= n  ) //current is a leaf....
    {
        //do nothing! base case!! party down!
    }
    else if( items[current] <= items[minChild(current)]  ) //no violation..
    {
        //done!1 party down! base case
    }
    else
    {
        //step 1: swap with min child
        int mchild = minChild(current);
        swap( items[current], items[mchild] );

        //step 2: continue bubbling down
        bubbleDown(mchild);
    }
}


public:
minHeap(int cap)
{
    items = new THING[cap];
    n=0;
}

//return true if heap is empty
bool empty()
{
    if( n==0 )
        return true;
    else
        return false;
}

//add item x to heap
void insert(THING x)
{
    //step 1:  add x to end of array
    items[n] = x;
    n++;

    //step 2: bubble up!
    bubbleUp(n-1);
}

//remove and return smallest item in heap
THING extractMin()
{
    //step 1: store root item in output box
    THING output = items[0];

    //step 2: put last item at root
    items[0] = items[n-1];
    n--;

    //step 3: bubble down!
    bubbleDown(0);

    return output;
}

};

2 个答案:

答案 0 :(得分:2)

vertex  *dog = new vertex(0,0,0);
vertex *cat = new vertex(0,0,0);
if(dog < cat)

比较两个指针并有效地比较地址。比较地址没有多大意义,因为它们可以有任何值。

您需要比较两个对象:

if(*dog < *cat)

当然,您还需要更改重载运算符的函数原型,以便将其考虑在内。

答案 1 :(得分:0)

vertex & vertex::operator=(vertex * z)

这是一个赋值运算符,它采用vertex类型的左侧和vextex*类型的右侧。 operator=的通常签名是:

vertex& operator=(const vertex& rhs);

后一个定义允许将一个对象分配给另一个对象,而前者将指针分配给对象< / em>的