我正面临一个应该使用Aho-Corasick自动机解决的问题。我给了一组单词(用'0'或'1'组成) - 模式,我必须决定是否有可能创建无限的文本,这些文本不包含任何给定的模式。我认为,解决方案是创建Aho-Corasick自动机并搜索没有匹配状态的循环,但我无法提出一个好的方法来做到这一点。我想过使用DFS搜索状态图,但是我不确定它是否会起作用并且我有一个实现问题 - 让我们假设,我们处于一个状态,它有一个'1'边缘 - 但状态指向edge被标记为匹配 - 所以我们不能使用那个边缘,我们可以尝试失败链接(当前状态没有'0'边缘) - 但我们还必须记住,我们不能从状态指向'1'边缘通过当前的失败链接。
有人能纠正我并告诉我该怎么做吗?我用C ++编写了Aho-Corasick,我确信它有效 - 我也理解整个算法。
以下是基本代码:
class AhoCorasick
{
static const int ALPHABET_SIZE = 2;
struct State
{
State* edge[ALPHABET_SIZE];
State* fail;
State* longestMatchingSuffix;
//Vector used to remember which pattern matches in this state.
vector< int > matching;
short color;
State()
{
for(int i = 0; i < ALPHABET_SIZE; ++i)
edge[i] = 0;
color = 0;
}
~State()
{
for(int i = 0; i < ALPHABET_SIZE; ++i)
{
delete edge[i];
}
}
};
private:
State root;
vector< int > lenOfPattern;
bool isFailComputed;
//Helper function used to traverse state graph.
State* move(State* curr, char letter)
{
while(curr != &root && curr->edge[letter] == 0)
{
curr = curr->fail;
}
if(curr->edge[letter] != 0)
curr = curr->edge[letter];
return curr;
}
//Function which computes fail links and longestMatchingSuffix.
void computeFailLink()
{
queue< State* > Q;
root.fail = root.longestMatchingSuffix = 0;
for(int i = 0; i < ALPHABET_SIZE; ++i)
{
if(root.edge[i] != 0)
{
Q.push(root.edge[i]);
root.edge[i]->fail = &root;
}
}
while(!Q.empty())
{
State* curr = Q.front();
Q.pop();
if(!curr->fail->matching.empty())
{
curr->longestMatchingSuffix = curr->fail;
}
else
{
curr->longestMatchingSuffix = curr->fail->longestMatchingSuffix;
}
for(int i = 0; i < ALPHABET_SIZE; ++i)
{
if(curr->edge[i] != 0)
{
Q.push(curr->edge[i]);
State* state = curr->fail;
state = move(state, i);
curr->edge[i]->fail = state;
}
}
}
isFailComputed = true;
}
public:
AhoCorasick()
{
isFailComputed = false;
}
//Add pattern to automaton.
//pattern - pointer to pattern, which will be added
//fun - function which will be used to transform character to 0-based index.
void addPattern(const char* const pattern, int (*fun) (const char *))
{
isFailComputed = false;
int len = strlen(pattern);
State* curr = &root;
const char* pat = pattern;
for(; *pat; ++pat)
{
char tmpPat = fun(pat);
if(curr->edge[tmpPat] == 0)
{
curr = curr->edge[tmpPat] = new State;
}
else
{
curr = curr->edge[tmpPat];
}
}
lenOfPattern.push_back(len);
curr->matching.push_back(lenOfPattern.size() - 1);
}
};
int alphabet01(const char * c)
{
return *c - '0';
}
答案 0 :(得分:0)
我没有查看您的代码,但我知道非常简单有效的实现。
首先,让我们将词典后缀链接添加到树中(您可以在维基百科中找到它们的描述)。然后你必须浏览所有的树,并以某种方式标记匹配的节点和节点,将Dict后缀链接作为坏节点。这些操作的解释很明显:您不需要所有匹配的节点,也不需要具有匹配后缀的节点。
现在你有一个没有任何匹配节点的Aho-Corasick树。如果您只在结果树上运行DFS算法,您将得到您想要的。