我不习惯使用R中的时间序列数据,我对此有点困惑。我有一个事件参考数据框和事件记录的数据。这些数据运行了7年,并希望将其总结为7年期间每月的事件数,并使用ggplot2进行绘制。
我似乎无法让日期转换一起工作,所以我最终会得到一个计数和一个日期,我可以提供给ggplot2' scale_x_date()
函数
以下是数据的示例:
df <- structure(list(Ref = structure(c(127L, 33L, 232L, 392L, 490L,
242L, 437L, 346L, 443L, 560L, 598L, 568L, 103L, 262L, 463L, 17L,
114L, 276L, 361L, 422L), .Label = c("01090013", "0109005", "0109006",
"0109007", "0109009", "0109010", "0109011", "0109012", "0109014",
"0109016", "0109022", "0110001", "0110004", "0110007", "0110009",
"0110011", "0111001", "0111002", "0111012", "0111016", "0111017",
"0112001", "0112003", "0112008", "0112010", "015004", "015006",
"015008", "015010", "015013", "016002", "016003", "016004", "016005",
"016006", "016008", "016009", "016010", "016011", "016013", "016014",
"016016", "017001", "018001", "018004", "018005", "018007", "018008",
"018009", "020626", "0209024", "0209025", "0209026", "0209027",
"0209029", "0209031", "0209035", "0209037", "02100020", "0210017",
"0210018", "0210023", "0210026", "0210030", "0211018", "0211019",
"0211020", "0211022", "0211024", "0211025", "0211026", "0212018",
"0212021", "0212025", "0212027", "025018", "025021", "025022",
"025023", "025024", "025025", "025026", "025030", "026019", "026020",
"026021", "026023", "026025", "026027", "026030", "026032", "0270010",
"027010", "027012", "027013", "027014", "027016", "027017", "0309038",
"0309039", "0309041", "0309046", "0309050", "0309052", "0309053",
"0310035", "0310037", "0310041", "0310043", "0310044", "0311028",
"0311032", "0311035", "0311038", "0312031", "0312036", "0312037",
"0312043", "0312045", "0312047", "0312056", "0312058", "0312059",
"0312062", "035033", "035034", "035036", "035037", "035038",
"035040", "035041", "035042", "035043", "035045", "035049", "036036",
"036038", "036039", "036041", "036042", "036044", "036045", "036046",
"036047", "036048", "036050", "036051", "037021", "037026", "037029",
"038026", "038032", "038034", "038035", "038036", "0409056",
"0409057", "0409062", "0410046", "0410049", "0410050", "0410051",
"0410054", "0410055", "0410056", "0410057", "0410058", "0410060",
"0410062", "0410064", "0411047", "0411051", "0411052", "0411055",
"0412070", "0412074", "0412075", "0412076", "045054", "045056",
"045058", "045063", "045064", "045065", "045072", "046054", "046055",
"046058", "046060", "047035", "047036", "047037", "047038", "047041",
"047042", "047044", "047045", "047046", "048040", "048043", "048044",
"048045", "048048", "048050", "048051", "0509073", "0509080",
"0510066", "0510067", "0510082", "0511062", "0511065", "0511068",
"0511069", "0511072", "0512084", "0512088", "0512089", "0512091",
"055073", "055075", "055080", "055086", "055089", "055091", "055093",
"055094", "055095", "056064", "056066", "056067", "056068", "056070",
"056071", "056073", "056074", "057049", "057052", "057053", "057054",
"057058", "057059", "057060", "057061", "057063", "057065", "057066",
"057067", "057068", "057069", "058053", "058055", "058056", "058059",
"058062", "058064", "0609082", "0609086", "0609088", "0609089",
"0609090", "0609093", "0609095", "0609096", "0609097", "0609098",
"0609103", "0610086", "0610089", "0610095", "0610096", "0610098",
"0611073", "0611074", "0611080", "0611081", "0612109", "0612115",
"065096", "065099", "065103", "065105", "065106", "065109", "065114",
"066075", "066076", "066077", "066078", "066081", "066083", "067080",
"067081", "067084", "068065", "068070", "068074", "0709106",
"0709108", "0709113", "0709115", "0709116", "0709117", "0709120",
"0710104", "0710105", "0710107", "0710108", "0710110", "0710115",
"0710116", "0710117", "0710123", "0711083", "0711084", "0711085",
"0711086", "0711087", "0711088", "0711092", "0712122", "0712126",
"0712127", "0712128", "0712129", "075118", "075119", "075123",
"075124", "075125", "075126", "075127", "075130", "075132", "075133",
"076084", "076087", "076088", "076090", "076092", "076093", "076094",
"077103", "077105", "078079", "078080", "078081", "078082", "078085",
"078086", "0809126", "0809134", "0809137", "0809141", "0809143",
"0810125", "0810137", "0811099", "0811101", "0811106", "0811108",
"0811112", "0811113", "0811114", "0812142", "0812145", "0812150",
"0812152", "0814143", "085139", "085143", "085145", "085148",
"085149", "085150", "085154", "085156", "085160", "085163", "086098",
"086099", "086100", "086101", "086102", "086104", "086107", "086108",
"086109", "086110", "086111", "086112", "086114", "086115", "087106",
"087107", "087109", "087112", "088094", "088096", "088097", "088098",
"0909145", "0909155", "0909158", "0910145", "0910146", "0910147",
"0910149", "0910150", "0910153", "0910154", "0911116", "0911117",
"0911120", "0911121", "0911122", "0911123", "0911124", "0911130",
"0911131", "0912161", "0912163", "0912168", "0912171", "0912172",
"095166", "095167", "095170", "095171", "095172", "095178", "095180",
"096116", "096117", "096121", "097120", "097124", "097125", "097126",
"097132", "097133", "097136", "098110", "098115", "098116", "098119",
"100006825", "100006830", "1009160", "1009161", "1009162", "1009164",
"1009165", "1009166", "1009169", "1009170", "1009172", "1009173",
"1009174", "1010160", "1010162", "1010163", "1010164", "1010166",
"1010168", "1011133-A", "1011134", "1011140", "1011142", "1012179",
"1012184", "1012185", "1012194", "105185", "105186", "105187",
"105188", "105189", "105191", "105192", "105196", "105197", "105198",
"105199", "105201", "105202", "105207", "105208", "105211", "106127",
"106130", "106131", "107138", "107140", "107143", "107147", "107148",
"107149", "107153", "107155", "107156", "108122", "108123", "108127",
"108129", "108130", "108131", "108132", "108134", "108135", "108136",
"1109175", "1109176", "1109180", "1109182", "1110173", "1110176",
"1110177", "1110178", "1110185", "1110186", "1111145", "1111150",
"1111151", "1112196", "1112197", "1112201", "1112202", "1112206",
"1112208", "1112209", "1112212", "1112218", "1112220", "1112223",
"1112225", "1112226", "1112227", "115215", "115216", "115217",
"115218", "115219", "115223", "115225", "115226", "116139", "116143",
"116144", "116145", "117161", "117162", "117164", "117165", "117168",
"117175", "117180", "118139", "118140", "118143", "118147", "118148",
"118150", "118152", "118154", "118157", "118160", "118161", "1209188",
"1209189", "1209191", "1209193", "1209199", "1210191", "1210193",
"1211157", "1211158", "1211168", "1211169", "1211170", "1211171",
"1211173", "1212233", "1212235", "1212240", "125231", "125238",
"125241", "126147", "126149", "127182", "127183", "127186", "127187",
"127192", "127194", "128165", "128168", "128169", "128171", "128172",
"128175", "128176", "128177", "128182", "128183", "128184", "128186",
"128189", "128193"), class = "factor"), Date = structure(c(12846,
13154, 13284, 13391, 13434, 13655, 13766, 14067, 14119, 14183,
14209, 14211, 14322, 14412, 14897, 14960, 15049, 15155, 15201,
15597), class = "Date")), .Names = c("Ref", "Date"), row.names = c(NA,
-20L), class = "data.frame")
这让我发疯了!
由于 ħ
答案 0 :(得分:8)
我相信你正在寻找这个:
df <- transform(df, month = format(Date,"%m"), year = format(Date, "%Y"))
counts <- ddply(df,.(month,year),nrow)
然后绘制日期:
# make a new monthly date
counts <- transform(counts, new_date = as.Date(paste(year,month,'01',sep="-")))
# now plot
ggplot(counts,aes(x=new_date,y=V1)) + geom_point() + scale_x_date()
答案 1 :(得分:6)
xts
包对于时间序列操作非常方便。
首先我创建了xts对象:
library(xts)
dat.xts <- xts(df$Ref,order.by=as.POSIXct(df$Date))
然后我使用apply.monthly
按天计算,并将其绘制为xts
对象
count.month <- apply.monthly(dat.xts,FUN=length)
plot(count.month, type='b')
如果您想使用ggplot2
,可以将结果转换为data.frame。
as.data.frame(count.month)
答案 2 :(得分:2)
另一种选择:
data$Month <- format(as.POSIXct(data$Date), "%Y-%m")
by.month.count <- data.frame(with(data, table(Month)))