在R i中有2个dataFrames“df1”和“df2”。它们如下:
> df1
date value
1 1980-12-10 5
2 1980-12-11 5
3 1980-12-12 5
4 1980-12-13 5
5 1980-12-14 5
>df2
date value
1 1980-12-10 15
2 1980-12-11 2
3 1980-12-12 23
4 1980-12-13 44
5 1980-12-14 434
6 1980-12-15 242
7 1980-12-16 22
8 1980-12-17 82
9 1980-12-18 723
10 1980-12-19 72
我想改变“df2”。仅当df1与df2具有相同日期时,df2才必须包含值。 其实我需要以下输出:
>df2
date value
1 1980-12-10 15
2 1980-12-11 2
3 1980-12-12 23
4 1980-12-13 44
5 1980-12-14 434
是否可以在R?
答案 0 :(得分:2)
您可以使用子集和%in%
:
df2[df2$date%in%df1$date,]
date value
1 1980-12-10 15
2 1980-12-11 2
3 1980-12-12 23
4 1980-12-13 44
5 1980-12-14 434
答案 1 :(得分:1)
# read in both data frames
df1 <-
read.table( h = TRUE , text = "date value
1980-12-10 5
1980-12-11 5
1980-12-12 5
1980-12-13 5
1980-12-14 5")
df2 <-
read.table( h = TRUE , text = "date value
1980-12-10 15
1980-12-11 2
1980-12-12 23
1980-12-13 44
1980-12-14 434
1980-12-15 242
1980-12-16 22
1980-12-17 82
1980-12-18 723
1980-12-19 72")
# merge df1 and df2, only keeping the date column from df1
# but note no comma, which maintains the `class` of df1,
# allowing the merge to work appropriately
merge( df1[ 'date' ] , df2 )
# and if you wanted to overwrite df2 with the new results:
df2 <- merge( df1[ 'date' ] , df2 )
答案 2 :(得分:1)
您可以使用sqldf
来执行SQL INNER JOIN(R合并),例如:
library(sqldf)
sqldf('SELECT df2.*
FROM df2
INNER JOIN df1
ON df1.date = df2.date')
date value
1 1980-12-10 15
2 1980-12-11 2
3 1980-12-12 23
4 1980-12-13 44
5 1980-12-14 434