lucene - 给予更多权重,更接近的术语是标题的开头

时间:2013-03-01 10:01:15

标签: java lucene

我了解如何在索引时或查询时提升字段。但是,如何才能增加匹配标题开头附近的分数?

示例:

Query = "lucene"

Doc1 title = "Lucene: Homepage"
Doc2 title = "I have a question about lucene?"

我希望第一份文件得分更高,因为“lucene”更接近开头(暂时忽略术语频率)。

我看到如何使用SpanQuery来指定术语之间的接近程度,但我不确定如何使用有关该字段中位置的信息。

我在Java中使用Lucene 4.1。

2 个答案:

答案 0 :(得分:10)

我会使用SpanFirstQuery,它匹配字段开头附近的字词。由于所有跨度查询都依赖于位置,默认情况下在lucene中进行索引时启用。

让我们独立测试:您只需要提供SpanTermQuery和可以找到该术语的最大位置(在我的示例中为一个)。

SpanTermQuery spanTermQuery = new SpanTermQuery(new Term("title", "lucene"));
SpanFirstQuery spanFirstQuery = new SpanFirstQuery(spanTermQuery, 1);

如果您使用StandardAnalyzer分析了这两个文档,那么此查询将只找到标题为“Lucene:Homepage”的第一个文档。

现在我们可以以某种方式将上述SpanFirstQuery与普通文本查询相结合,并使第一个仅影响分数。您可以使用BooleanQuery轻松地执行此操作,并将span查询作为这样的should子句:

Term term = new Term("title", "lucene");
TermQuery termQuery = new TermQuery(term);
SpanFirstQuery spanFirstQuery = new SpanFirstQuery(new SpanTermQuery(term), 1);
BooleanQuery booleanQuery = new BooleanQuery();
booleanQuery.add(new BooleanClause(termQuery, BooleanClause.Occur.MUST));
booleanQuery.add(new BooleanClause(spanFirstQuery, BooleanClause.Occur.SHOULD));

可能有不同的方法来实现相同,也许使用CustomScoreQuery或自定义代码来实现评分,但在我看来这是最简单的。

我用来测试它的代码打印出以下输出(包括得分),首先执行TermQuery,然后是唯一SpanFirstQuery,最后是BooleanQuery合并:

------ TermQuery --------
Total hits: 2
title: I have a question about lucene - score: 0.26010898
title: Lucene: I have a really hard question about it - score: 0.22295055
------ SpanFirstQuery --------
Total hits: 1
title: Lucene: I have a really hard question about it - score: 0.15764984
------ BooleanQuery: TermQuery (MUST) + SpanFirstQuery (SHOULD) --------
Total hits: 2
title: Lucene: I have a really hard question about it - score: 0.26912516
title: I have a question about lucene - score: 0.09196242

以下是完整的代码:

public static void main(String[] args) throws Exception {

        Directory directory = FSDirectory.open(new File("data"));

        index(directory);

        IndexReader indexReader = DirectoryReader.open(directory);
        IndexSearcher indexSearcher = new IndexSearcher(indexReader);

        Term term = new Term("title", "lucene");

        System.out.println("------ TermQuery --------");
        TermQuery termQuery = new TermQuery(term);
        search(indexSearcher, termQuery);

        System.out.println("------ SpanFirstQuery --------");
        SpanFirstQuery spanFirstQuery = new SpanFirstQuery(new SpanTermQuery(term), 1);
        search(indexSearcher, spanFirstQuery);

        System.out.println("------ BooleanQuery: TermQuery (MUST) + SpanFirstQuery (SHOULD) --------");
        BooleanQuery booleanQuery = new BooleanQuery();
        booleanQuery.add(new BooleanClause(termQuery, BooleanClause.Occur.MUST));
        booleanQuery.add(new BooleanClause(spanFirstQuery, BooleanClause.Occur.SHOULD));
        search(indexSearcher, booleanQuery);
    }

    private static void index(Directory directory) throws Exception {
        IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_41, new StandardAnalyzer(Version.LUCENE_41));

        IndexWriter writer = new IndexWriter(directory, config);

        FieldType titleFieldType = new FieldType();
        titleFieldType.setIndexOptions(FieldInfo.IndexOptions.DOCS_AND_FREQS_AND_POSITIONS);
        titleFieldType.setIndexed(true);
        titleFieldType.setStored(true);

        Document document = new Document();
        document.add(new Field("title","I have a question about lucene", titleFieldType));
        writer.addDocument(document);

        document = new Document();
        document.add(new Field("title","Lucene: I have a really hard question about it", titleFieldType));
        writer.addDocument(document);

        writer.close();
    }

    private static void search(IndexSearcher indexSearcher, Query query) throws Exception {
        TopDocs topDocs = indexSearcher.search(query, 10);

        System.out.println("Total hits: " + topDocs.totalHits);

        for (ScoreDoc hit : topDocs.scoreDocs) {
            Document result = indexSearcher.doc(hit.doc);
            for (IndexableField field : result) {
                System.out.println(field.name() + ": " + field.stringValue() +  " - score: " + hit.score);
            }
        }
    }

答案 1 :(得分:0)

来自“Lucene In Action 2”一书

“Lucene在包中提供了内置查询PayloadTermQuery org.apache.lucene.search.payloads。这个查询就是 像SpanTermQuery一样,它匹配包含指定术语的所有文档 并跟踪匹配的 实际发生次数(跨度)

但随后它可以让您根据出现的有效负载贡献一个评分因子 在每个学期的发生。为此,您必须创建自己的Similarity类 它定义了scorePayload方法,就像这个“

public class BoostingSimilarity extends DefaultSimilarity {
public float scorePayload(int docID, String fieldName,
int start, int end, byte[] payload,
int offset, int length) {
....
}
上面代码中的“start”只是有效负载的起始位置。有效负载与该术语相关联。因此,起始位置也适用于该术语(至少这是我所相信的......)

通过使用上述代码,但忽略有效负载,您可以访问评分地点的“开始”位置,然后您可以根据该起始值提高分数。

例如:新分数=原始分数*(1.0f /起始位置)

我希望上述内容有效,如果您找到其他有效的解决方案,请在此发布。