我有一个ndarray。从这个数组我需要选择具有最大值的N个数字列表。我发现heapq.nlargest
找到N个最大的条目,但我需要提取索引。
我想构建一个新的数组,其中只有第一列中权重最大的N行才能存活。其余行将替换为随机值
import numpy as np
import heapq # For choosing list of max values
a = [[1.1,2.1,3.1], [2.1,3.1,4.1], [5.1,0.1,7.1],[0.1,1.1,1.1],[4.1,3.1,9.1]]
a = np.asarray(a)
maxVal = heapq.nlargest(2,a[:,0])
if __name__ == '__main__':
print a
print maxVal
我的输出是:
[[ 1.1 2.1 3.1]
[ 2.1 3.1 4.1]
[ 5.1 0.1 7.1]
[ 0.1 1.1 1.1]
[ 4.1 3.1 9.1]]
[5.0999999999999996, 4.0999999999999996]
但我需要的是[2,4]
作为构建新数组的索引。索引是行,所以如果在这个例子中我想将其余的替换为0,我需要完成:
[[0.0 0.0 0.0]
[ 0.0 0.0 0.0]
[ 5.1 0.1 7.1]
[ 0.0 0.0 0.0]
[ 4.1 3.1 9.1]]
我陷入了需要索引的地步。原始数组有1000行和100列。权重是标准化的浮点数,我不想做if a[:,1] == maxVal[0]:
之类的事情,因为有时我的权重非常接近,并且可以使用比原始N更多的值maxVal[0]
来完成。
有没有简单的方法来提取此设置上的索引来替换数组的其余部分?
答案 0 :(得分:4)
如果你只有1000行,我会忘记堆并在第一列使用np.argsort
:
>>> np.argsort(a[:,0])[::-1][:2]
array([2, 4])
如果你想把它们放在一起,它看起来像是:
def trim_rows(a, n) :
idx = np.argsort(a[:,0])[:-n]
a[idx] = 0
>>> a = np.random.rand(10, 4)
>>> a
array([[ 0.34416425, 0.89021968, 0.06260404, 0.0218131 ],
[ 0.72344948, 0.79637177, 0.70029863, 0.20096129],
[ 0.27772833, 0.05372373, 0.00372941, 0.18454153],
[ 0.09124461, 0.38676351, 0.98478492, 0.72986697],
[ 0.84789887, 0.69171688, 0.97718206, 0.64019977],
[ 0.27597241, 0.26705301, 0.62124467, 0.43337711],
[ 0.79455424, 0.37024814, 0.93549275, 0.01130491],
[ 0.95113795, 0.32306471, 0.47548887, 0.20429272],
[ 0.3943888 , 0.61586129, 0.02776393, 0.2560126 ],
[ 0.5934556 , 0.23093912, 0.12550062, 0.58542137]])
>>> trim_rows(a, 3)
>>> a
array([[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0.84789887, 0.69171688, 0.97718206, 0.64019977],
[ 0. , 0. , 0. , 0. ],
[ 0.79455424, 0.37024814, 0.93549275, 0.01130491],
[ 0.95113795, 0.32306471, 0.47548887, 0.20429272],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ]])
对于您的数据大小,它可能足够快:
In [7]: a = np.random.rand(1000, 100)
In [8]: %timeit -n1 -r1 trim_rows(a, 50)
1 loops, best of 1: 7.65 ms per loop