答案 0 :(得分:44)
如果您使用的是numpy版本1.13.0或更高版本,则可以使用numpy.heaviside
:
In [61]: x
Out[61]: array([-2. , -1.5, -1. , -0.5, 0. , 0.5, 1. , 1.5, 2. ])
In [62]: np.heaviside(x, 0.5)
Out[62]: array([ 0. , 0. , 0. , 0. , 0.5, 1. , 1. , 1. , 1. ])
对于旧版本的numpy,您可以将其实现为0.5 * (numpy.sign(x) + 1)
In [65]: 0.5 * (numpy.sign(x) + 1)
Out[65]: array([ 0. , 0. , 0. , 0. , 0.5, 1. , 1. , 1. , 1. ])
答案 1 :(得分:18)
可能最简单的方法就是
def step(x):
return 1 * (x > 0)
这适用于单个数字和numpy数组,返回整数,对于x = 0则为零。在某些情况下,最后一个条件可能优于step(0) => 0.5
。
答案 2 :(得分:13)
它是sympy的一部分,您可以使用pip install sympy
来自文档:
class sympy.functions.special.delta_functions.Heaviside
Heaviside Piecewise function. Heaviside function has the following properties:
1) diff(Heaviside(x),x) = DiracDelta(x) ( 0, if x<0 )
2) Heaviside(x) = < [*] 1/2 if x==0 ( 1, if x>0 )
您可以这样使用它:
In [1]: from sympy.functions.special.delta_functions import Heaviside
In [2]: Heaviside(1)
Out[2]: 1
In [3]: Heaviside(0)
Out[3]: 1/2
In [4]: Heaviside(-1)
Out[4]: 0
你也可以写自己的:
heaviside = lambda x: 0.5 if x == 0 else 0 if x < 0 else 1
如果您需要符号变量,则可能无法满足您的需求。
答案 3 :(得分:5)
我不确定它是不是开箱即用,但你总是可以写一个:
def heaviside(x):
if x == 0:
return 0.5
return 0 if x < 0 else 1
答案 4 :(得分:5)
从numpy 1.13开始,它是numpy.heaviside
。
答案 5 :(得分:1)
不确定是否有最好的方法让事情完成......但这里是我破解的功能。
def u(t):
unit_step = numpy.arange(t.shape[0])
lcv = numpy.arange(t.shape[0])
for place in lcv:
if t[place] == 0:
unit_step[place] = .5
elif t[place] > 0:
unit_step[place] = 1
elif t[place] < 0:
unit_step[place] = 0
return unit_step
答案 6 :(得分:1)
def heaviside(xx):
return numpy.where(xx <= 0, 0.0, 1.0) + numpy.where(xx == 0.0, 0.5, 0.0)
或者,如果numpy.where
太慢:
def heaviside(xx):
yy = numpy.ones_like(xx)
yy[xx < 0.0] = 0.0
yy[xx == 0.0] = 0.5
return yy
以下时间是numpy 1.8.2;在numpy 1.9.0中进行了一些优化,所以请自己尝试一下:
>>> import timeit
>>> import numpy
>>> array = numpy.arange(10) - 5
>>> def one():
... return numpy.where(array <= 0, 0.0, 1.0) + numpy.where(array == 0.0, 0.5, 0.0)
...
>>> def two():
... yy = numpy.ones_like(array)
... yy[array < 0] = 0.0
... yy[array == 0] = 0.5
... return yy
...
>>> timeit.timeit(one, number=100000)
3.026144027709961
>>> timeit.timeit(two, number=100000)
1.5265140533447266
>>> numpy.__version__
'1.8.2'
在不同的机器上,使用不同的numpy:
>>> timeit.timeit(one, number=100000)
0.5119631290435791
>>> timeit.timeit(two, number=100000)
0.5458788871765137
>>> numpy.__version__
'1.11.1'
>>> def three():
... return 0.5*(numpy.sign(array) + 1)
...
>>> timeit.timeit(three, number=100000)
0.313539981842041
答案 7 :(得分:0)
简便解决方案:
import numpy as np
amplitudes = np.array([1*(x >= 0) for x in range(-5,6)])