返回一个布尔数据框架

时间:2013-02-25 06:43:21

标签: python pandas where

我想用布尔值创建一个DataFrame,其中np.nan == False,任何正实数值== True。

import numpy as np
import pandas as pd
DF = pd.DataFrame({'a':[1,2,3,4,np.nan],'b':[np.nan,np.nan,np.nan,5,np.nan]})

DF.apply(bool) # Does not work
DF.where(DF.isnull() == False) # Does not work
DF[DF.isnull() == False] # Does not work

3 个答案:

答案 0 :(得分:2)

很奇怪,但- np.isnan(df)看起来比pd.notnull(df)更能胜过山体滑坡:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: df = pd.DataFrame({'a':[1,2,3,4,np.nan],'b':[np.nan,np.nan,np.nan,5,np.nan]})


In [4]: - np.isnan(df)
Out[4]: 
       a      b
0   True  False
1   True  False
2   True  False
3   True   True
4  False  False

In [5]: %timeit - np.isnan(df)
10000 loops, best of 3: 159 us per loop

In [6]: %timeit pd.notnull(df)
1000 loops, best of 3: 1.22 ms per loop

答案 1 :(得分:2)

isnull的便利功能,名为notnull

In [11]: pd.notnull(df)
Out[11]: 
       a      b
0   True  False
1   True  False
2   True  False
3   True   True
4  False  False

答案 2 :(得分:0)

使用某些格式错误比较df上的notnull()和isnan():

df = pd.DataFrame({'a':[1,2,3,4,np.nan],'b':[np.nan,np.nan,np.nan,5,np.nan],'c':['fish','bear','cat','dog',np.nan]})

%%timeit
legit_dexes =  np.isnan(df[df<=""].astype(float)) == False

1000次循环,每次循环最佳3:632 us

%%timeit
legit_dexes = pd.notnull(df)

1000循环,最佳3:每循环751 us

忽略格式错误列的这种变体也类似:

%%timeit
legit_dexes = np.isnan(df[df.columns[df.apply(lambda x: not np.any(x.values>=""))]]) == False

1000循环,每循环3:681 us