我正在学习Python,并且通过在线资源和本网站上的人员的帮助,我正在掌握它。在我的第一个脚本中,我正在解析Twitter RSS提要条目并将结果插入到数据库中,还有一个我无法解决的问题。即,重复的条目正被插入其中一个表中。
作为一些背景知识,我最初在HalOtis.com上找到了一个用于下载RSS源的基本脚本,然后通过多种方式对其进行了修改:1)修改后考虑了Twitter RSS源中的特性(它没有分成内容,标题,URL等); 2)为“hashtags”和多对多关系添加表(entry_tag表); 3)将表格设置改为sqlalchemy; 4)进行了一些临时更改,以解决正在发生的奇怪的unicode问题。因此,代码在某些地方是丑陋的,但它是一个很好的学习经验,现在可以工作 - 除了它继续在“条目”表中插入重复项。
由于我不确定什么对人们最有帮助,我已经粘贴在下面的整个代码中,在一些地方发表了一些评论,指出我认为最重要的。
我真的很感激任何帮助。谢谢!
编辑:有人建议我提供数据库的架构。我以前从未这样做过,所以如果我做得不对,请耐心等待。我正在设置四个表:
简而言之,下面的脚本从RSS Feeds表中获取五个测试RSS源,从每个feed下载20个最新条目/推文,解析条目,并将信息放入RSS Entries,Tags和entry_tag表。
#!/usr/local/bin/python
import sqlite3
import threading
import time
import Queue
from time import strftime
import re
from string import split
import feedparser
from django.utils.encoding import smart_str, smart_unicode
from sqlalchemy import schema, types, ForeignKey, select, orm
from sqlalchemy import create_engine
engine = create_engine('sqlite:///test98.sqlite', echo=True)
metadata = schema.MetaData(engine)
metadata.bind = engine
def now():
return datetime.datetime.now()
#set up four tables, with many-to-many relationship
RSSFeeds = schema.Table('feeds', metadata,
schema.Column('id', types.Integer,
schema.Sequence('feeds_seq_id', optional=True), primary_key=True),
schema.Column('url', types.VARCHAR(1000), default=u''),
)
RSSEntries = schema.Table('entries', metadata,
schema.Column('id', types.Integer,
schema.Sequence('entries_seq_id', optional=True), primary_key=True),
schema.Column('feed_id', types.Integer, schema.ForeignKey('feeds.id')),
schema.Column('short_url', types.VARCHAR(1000), default=u''),
schema.Column('content', types.Text(), nullable=False),
schema.Column('hashtags', types.Unicode(255)),
schema.Column('date', types.String()),
)
tag_table = schema.Table('tag', metadata,
schema.Column('id', types.Integer,
schema.Sequence('tag_seq_id', optional=True), primary_key=True),
schema.Column('tagname', types.Unicode(20), nullable=False, unique=True),
)
entrytag_table = schema.Table('entrytag', metadata,
schema.Column('id', types.Integer,
schema.Sequence('entrytag_seq_id', optional=True), primary_key=True),
schema.Column('entryid', types.Integer, schema.ForeignKey('entries.id')),
schema.Column('tagid', types.Integer, schema.ForeignKey('tag.id')),
)
metadata.create_all(bind=engine, checkfirst=True)
# Insert test set of Twitter RSS feeds
stmt = RSSFeeds.insert()
stmt.execute(
{'url': 'http://twitter.com/statuses/user_timeline/14908909.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/52903246.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/41902319.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/29950404.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/35699859.rss'},
)
#These 3 lines for threading process (see HalOtis.com for example)
THREAD_LIMIT = 20
jobs = Queue.Queue(0)
rss_to_process = Queue.Queue(THREAD_LIMIT)
#connect to sqlite database and grab the 5 test RSS feeds
conn = engine.connect()
feeds = conn.execute('SELECT id, url FROM feeds').fetchall()
#This block contains all the parsing and DB insertion
def store_feed_items(id, items):
""" Takes a feed_id and a list of items and stores them in the DB """
for entry in items:
conn.execute('SELECT id from entries WHERE short_url=?', (entry.link,))
#note: entry.summary contains entire feed entry for Twitter,
#i.e., not separated into content, etc.
s = unicode(entry.summary)
test = s.split()
tinyurl2 = [i for i in test if i.startswith('http://')]
hashtags2 = [i for i in s.split() if i.startswith('#')]
content2 = ' '.join(i for i in s.split() if i not in tinyurl2+hashtags2)
content = unicode(content2)
tinyurl = unicode(tinyurl2)
hashtags = unicode (hashtags2)
print hashtags
date = strftime("%Y-%m-%d %H:%M:%S",entry.updated_parsed)
#Insert parsed feed data into entries table
#THIS IS WHERE DUPLICATES OCCUR
result = conn.execute(RSSEntries.insert(), {'feed_id': id, 'short_url': tinyurl,
'content': content, 'hashtags': hashtags, 'date': date})
entry_id = result.last_inserted_ids()[0]
#Look up tag identifiers and create any that don't exist:
tags = tag_table
tag_id_query = select([tags.c.tagname, tags.c.id], tags.c.tagname.in_(hashtags2))
tag_ids = dict(conn.execute(tag_id_query).fetchall())
for tag in hashtags2:
if tag not in tag_ids:
result = conn.execute(tags.insert(), {'tagname': tag})
tag_ids[tag] = result.last_inserted_ids()[0]
#insert data into entrytag table
if hashtags2: conn.execute(entrytag_table.insert(),
[{'entryid': entry_id, 'tagid': tag_ids[tag]} for tag in hashtags2])
#Rest of file completes the threading process
def thread():
while True:
try:
id, feed_url = jobs.get(False) # False = Don't wait
except Queue.Empty:
return
entries = feedparser.parse(feed_url).entries
rss_to_process.put((id, entries), True) # This will block if full
for info in feeds: # Queue them up
jobs.put([info['id'], info['url']])
for n in xrange(THREAD_LIMIT):
t = threading.Thread(target=thread)
t.start()
while threading.activeCount() > 1 or not rss_to_process.empty():
# That condition means we want to do this loop if there are threads
# running OR there's stuff to process
try:
id, entries = rss_to_process.get(False, 1) # Wait for up to a second
except Queue.Empty:
continue
store_feed_items(id, entries)
答案 0 :(得分:2)
看起来您将SQLAlchemy包含在以前存在的不使用SQLAlchemy的脚本中。这里有太多活动部件,我们似乎都不太了解。
我建议从头开始。不要使用线程。不要使用sqlalchemy。要开始可能甚至不使用SQL数据库。编写一个脚本,使用简单的循环和time.sleep()以简单的方式将您想要的信息收集到一个简单的数据结构中。然后,当它工作时,你可以添加存储到SQL数据库,我真的不认为直接编写SQL语句比使用ORM更难,并且它更容易调试恕我直言。您很可能永远不需要添加线程。
“如果你认为自己足够聪明,可以编写多线程程序,那么你就不是。” - 詹姆斯阿尔斯特罗姆。