我有一个d3.js条形图,使用一些包含12个元素的json数据。我用于条形高度的数据值是fpkm。我能够将该值作为d3数据函数的回调返回 - 但仅限于一半的元素。
我的问题是只有前半部分值出现在我的条形图中。我只得到与前6个值相对应的6行。
我在这里做了一个小提琴:http://jsfiddle.net/z9Mvt/
我似乎无法弄清楚为什么它只使用我的json中的一半元素。
任何帮助=赞赏。
html:
<div align='center' id="GECGplot" style='width:98%;text-align:center;'></plot>
和js:
var gecgData= {"nodeName":"GECG","children":[{"nodeName":0,"nodeData":{"id":"643139","library_id":"SI_5589","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"1.1241","fpkm_conf_lo":"0.898502","fpkm_conf_hi":"1.34969","fpkm_status":"OK","fpkm_percentile_compendium":"8.33","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":1,"nodeData":{"id":"872561","library_id":"SI_5596","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"1.12666","fpkm_conf_lo":"0.871059","fpkm_conf_hi":"1.38226","fpkm_status":"OK","fpkm_percentile_compendium":"16.67","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":2,"nodeData":{"id":"1031623","library_id":"SI_5553","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"1.21305","fpkm_conf_lo":"0.949369","fpkm_conf_hi":"1.47674","fpkm_status":"OK","fpkm_percentile_compendium":"25.00","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":3,"nodeData":{"id":"248423","library_id":"SI_5486","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"1.98203","fpkm_conf_lo":"1.64888","fpkm_conf_hi":"2.31519","fpkm_status":"OK","fpkm_percentile_compendium":"33.33","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":4,"nodeData":{"id":"1039674","library_id":"SI_5554","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"2.24514","fpkm_conf_lo":"1.83333","fpkm_conf_hi":"2.65696","fpkm_status":"OK","fpkm_percentile_compendium":"41.67","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":5,"nodeData":{"id":"304849","library_id":"SI_5485","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"2.29868","fpkm_conf_lo":"2.02514","fpkm_conf_hi":"2.57221","fpkm_status":"OK","fpkm_percentile_compendium":"50.00","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":6,"nodeData":{"id":"417495","library_id":"SI_5484","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"2.61196","fpkm_conf_lo":"2.28949","fpkm_conf_hi":"2.93442","fpkm_status":"OK","fpkm_percentile_compendium":"58.33","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":7,"nodeData":{"id":"928522","library_id":"SI_5595","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"2.94397","fpkm_conf_lo":"2.61962","fpkm_conf_hi":"3.26832","fpkm_status":"OK","fpkm_percentile_compendium":"66.67","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":8,"nodeData":{"id":"622876","library_id":"SI_5552","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"3.27303","fpkm_conf_lo":"2.79509","fpkm_conf_hi":"3.75097","fpkm_status":"OK","fpkm_percentile_compendium":"75.00","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":9,"nodeData":{"id":"50230","library_id":"SI_5487","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"9.88611","fpkm_conf_lo":"8.6495","fpkm_conf_hi":"11.1227","fpkm_status":"OK","fpkm_percentile_compendium":"83.33","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":10,"nodeData":{"id":"816444","library_id":"SI_5594","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"15.1868","fpkm_conf_lo":"13.8218","fpkm_conf_hi":"16.5519","fpkm_status":"OK","fpkm_percentile_compendium":"91.67","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}},
{"nodeName":11,"nodeData":{"id":"496931","library_id":"SI_5551","gene_id":"ENSG00000157554","gene_short_name":"ERG","fpkm":"52.249","fpkm_conf_lo":"50.8217","fpkm_conf_hi":"53.6763","fpkm_status":"OK","fpkm_percentile_compendium":"100.00","chr_id":"21","start":"39751948","end":"40033704","locus":"21:39751948-40033704","report":"0","tracking_id":null,"class_code":null,"nearest_ref":null,"tss_id":null,"length":null,"coverage":null,"fpkm_percentile_origin_tissue":null,"fpkm_percentile_collection_tissue":null,"fpkm_percentile_sample_cancer":null,"fpkm_fold_change_benign":null}}]}
;
//Width and height
// var w = $('#GECGplot').width();
var w = 700;
var h = 300;
var barPadding = 1;
var margin = {top: 40, right: 10, bottom: 20, left: 10};
var xScale = d3.scale.linear().
domain([0, 20]). // your data minimum and maximum
range([0, h]); // the pixels to map to, e.g., the width of the diagram.
//Create SVG element
var svg = d3.select("#GECGplot")
.append("svg")
.attr("width", w)
.attr("height", h);
svg.selectAll("rect")
// .data(dataset)
.data(function(d, i) {
return plotData[i].nodeData.fpkm;
})
.enter()
.append("rect")
.attr("x", function(d, i) {
// alert(plotData.length);
return i * (w / plotData.length);
})
.attr("y", function(d, i) {
alert(plotData[i].nodeData.fpkm);
return h - (plotData[i].nodeData.fpkm * 50); //Height minus data value
})
.attr("width", w / plotData.length - barPadding)
.attr("height", function(d, i) {
return plotData[i].nodeData.fpkm * 50; //Just the data value
})
.attr("fill", function(d, i) {
return "rgb(0, 0, " + (plotData[i].nodeData.fpkm * 50) + ")";
})
svg.selectAll("text")
.data(function(d, i) {
return plotData[i].nodeData.fpkm;
})
.enter()
.append("text")
.text(function(d, i) {
return plotData[i].nodeData.fpkm;
})
.attr("font-family", "sans-serif")
.attr("font-size", "11px")
.attr("fill", "white")
.attr("text-anchor", "middle")
.attr("x", function(d, i) {
return i * (w / plotData.length) + (w / plotData.length - barPadding) / 2;
})
.attr("y", function(d, i) {
return h - (plotData[i].nodeData.fpkm * 50) + 14;
})
// alert(tableSchema);
答案 0 :(得分:1)
你走了。将数组“children”绑定到矩形元素,因此您不需要参数“i”来访问所需的值。
另外,我建议使用d3.scale.ordinal()作为x轴,而不是从数据中明确计算它。 Litte更灵活。
svg.selectAll("rect")
.data(plotData)
.enter().append("rect")
.attr("x", function(d, i) {return i * (w / plotData.length);})
.attr("y", function(d) {
return h - (d.nodeData.fpkm * 50); //Height minus data value
})
.attr("width", w / plotData.length - barPadding)
.attr("height", function(d, i) {
return d.nodeData.fpkm * 50; //Just the data value
})
.attr("fill", function(d, i) {
return "rgb(0, 0, " + (d.nodeData.fpkm * 50) + ")";
})