延迟播放音频

时间:2013-02-24 12:51:28

标签: java audio output-buffering delay

目前我正在开展一个关于“延迟听觉反馈”(DAF)的项目。基本上我想录制麦克风的声音,将其延迟特定的时间,然后播放。使用大约200ms的延迟和带耳机的人,这种反馈关闭了人们流利说话的能力。 (非常有趣:DAF on youtube

现在我正在尝试使用一个byte [] - 256字节的缓冲区,使用SourceDataLine和TargetDataLine进行此循环。如果缓冲区变大,延迟也会变大。我现在的问题是:我无法确定延迟的毫秒数。

有没有办法从缓冲区大小计算毫秒的实际延迟?或者可能有另一种方法来获得这个结果?

这就是我的循环现在的样子:

private int mBufferSize; // 256
private TargetDataLine mLineOutput;
private SourceDataLine mLineInput;
public void run() {

    ... creating the DataLines and getting the lines from AudioSystem ...

    // byte buffer for audio
    byte[] data = new byte[mBufferSize];

    // start the data lines
    mLineOutput.start();
    mLineInput.start();

    // start recording and playing back
    while (running) {
        mLineOutput.read(data, 0, mBufferSize);
        mLineInput.write(data, 0, mBufferSize);
    }

    ... closing the lines and exiting ...

}

2 个答案:

答案 0 :(得分:1)

您可以轻松计算延迟,因为它取决于音频的采样率。假设这是CD质量(单声道)音频,则采样率为每秒44,100个样本。 200毫秒是0.2秒,所以44,100 X 0.2 = 8820。

因此,您的音频播放需要延迟8820个样本(或17640个字节)。如果你使你的录音和播放缓冲区恰好这个大小(17640字节),它将使你的代码非常简单。当每个录音缓冲区都被填满时,你将它传递给回放;这将实现恰好一个缓冲区持续时间的回放延迟。

答案 1 :(得分:0)

Android应该考虑到一些固有的延迟,但除此之外......

创建循环缓冲区。无论多大,只要它对于N 0样品来说足够大。现在用N'0'样本写它。

在这种情况下,

N是(以秒为单位的延迟)*(以赫兹为单位的采样率)。

示例:200ms,16kHz立体声:

0.2s * 16000Hz *(2通道)= 3200 * 2个样本= 6400个样本

您可能也在使用pcm数据,这是16位,因此请使用short而不是byte。

在用正确的零填充缓冲区后,在填充麦克风数据的同时开始读取扬声器的数据。

PCM Fifo:

public class PcmQueue
{
    private short                mBuf[] = null;
    private int                  mWrIdx = 0;
    private int                  mRdIdx = 0;
    private int                  mCount = 0;
    private int                  mBufSz = 0;
    private Object               mSync  = new Object();

    private PcmQueue(){}

    public PcmQueue( int nBufSz )
    {
        try {
            mBuf = new short[nBufSz];
        } catch (Exception e) {
            Log.e(this.getClass().getName(), "AudioQueue allocation failed.", e);
            mBuf = null;
            mBufSz = 0;
        }
    }

    public int doWrite( final short pWrBuf[], final int nWrBufIdx, final int nLen )
    {
        int sampsWritten   = 0;

        if ( nLen > 0 ) {

            int toWrite;
            synchronized(mSync) {
                // Write nothing if there isn't room in the buffer.
                toWrite = (nLen <= (mBufSz - mCount)) ? nLen : 0;
            }

            // We can definitely read toWrite shorts.
            while (toWrite > 0)
            {
                // Calculate how many contiguous shorts to the end of the buffer
                final int sampsToCopy = Math.min( toWrite, (mBufSz - mWrIdx) );

                // Copy that many shorts.
                System.arraycopy(pWrBuf, sampsWritten + nWrBufIdx, mBuf, mWrIdx, sampsToCopy);

                // Circular buffering.
                mWrIdx += sampsToCopy;
                if (mWrIdx >= mBufSz) {
                    mWrIdx -= mBufSz;
                }

                // Increment the number of shorts sampsWritten.
                sampsWritten += sampsToCopy;
                toWrite -= sampsToCopy;
            }

            synchronized(mSync) {
                // Increment the count.
                mCount = mCount + sampsWritten;
            }
        }
        return sampsWritten;
    }

    public int doRead( short pcmBuffer[], final int nRdBufIdx, final int nRdBufLen )
    {
        int sampsRead   = 0;
        final int nSampsToRead = Math.min( nRdBufLen, pcmBuffer.length - nRdBufIdx );

        if ( nSampsToRead > 0 ) {
            int sampsToRead;
            synchronized(mSync) {
                // Calculate how many shorts can be read from the RdBuffer.
                sampsToRead = Math.min(mCount, nSampsToRead);
            }

            // We can definitely read sampsToRead shorts.
            while (sampsToRead > 0) 
            {
                // Calculate how many contiguous shorts to the end of the buffer
                final int sampsToCopy = Math.min( sampsToRead, (mBufSz - mRdIdx) );

                // Copy that many shorts.
                System.arraycopy( mBuf, mRdIdx, pcmBuffer, sampsRead + nRdBufIdx, sampsToCopy);

                // Circular buffering.
                mRdIdx += sampsToCopy;
                if (mRdIdx >= mBufSz)  {
                    mRdIdx -= mBufSz;
                }

                // Increment the number of shorts read.
                sampsRead += sampsToCopy;
                sampsToRead -= sampsToCopy;
            }

            // Decrement the count.
            synchronized(mSync) {
                mCount = mCount - sampsRead;
            }
        }
        return sampsRead;
    }
}

你的代码,为FIFO修改...我没有使用TargetDataLine / SourceDataLine的经验,所以如果它们只处理字节数组,则修改FIFO为字节而不是短。

private int mBufferSize; // 256
private TargetDataLine mLineOutput;
private SourceDataLine mLineInput;
public void run() {

    ... creating the DataLines and getting the lines from AudioSystem ...


    // short buffer for audio
    short[] data = new short[256];
    final int emptySamples = (int)(44100.0 * 0.2); 
    final int bufferSize = emptySamples*2; 
    PcmQueue pcmQueue = new PcmQueue( bufferSize );

    // Create a temporary empty buffer to write to the PCM queue
    {
        short[] emptyBuf = new short[emptySamples];
        Arrays.fill(emptyBuf, (short)emptySamples );
        pcmQueue.doWrite(emptyBuf, 0, emptySamples);
    }

    // start recording and playing back
    while (running) {
        mLineOutput.read(data, 0, mBufferSize);
        pcmQueue.doWrite(data, 0, mBufferSize);        
        pcmQueue.doRead(data, 0, mBufferSize);        
        mLineInput.write(data, 0, mBufferSize);
    }

    ... closing the lines and exiting ...

}