我需要使用所有reduce任务的结果执行聚合。基本上,reduce任务查找总和,计数和值。我需要添加所有的总和和计数,并找到最终的平均值。
我尝试在reduce中使用conf.setInt
。但是,当我尝试从主函数访问它时,它失败了
class Main {
public static class MyReducer
extends Reducer<Text, Text,Text,IntWritable> {
public void reduce(Text key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException {
int i = 0;
int fd = 0, fc = 0;
fd = context.getConfiguration().getInt("fd", -1);
fc = context.getConfiguration().getInt("fc", -1);
//when I check the value of fd, fc here they are fine. fc fd is shared across all reduce tasks and the updated value is seen by all reduce task. Only main function doesnt seem to have access to it.
}
}
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
conf.setInt("fc", 5);
Job job = new Job(conf, "Flight Data");
job.setJarByClass(FlightData.class);
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(MyReducer.class);
job.setPartitionerClass(FirstPartitioner.class);
job.setGroupingComparatorClass(GroupComparator.class);
job.setSortComparatorClass(KeyComparator.class);
job.setNumReduceTasks(10);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
flightCount = job.getConfiguration().getInt("fc", -1);
flightDelay = job.getConfiguration().getInt("fd", -1);
//here when I access fc, fd, I get back 5 & 5
System.out.println("Final " + flightCount +" " + flightDelay+ " " + flightDelay/flightCount);
}
答案 0 :(得分:0)
使用新的run()
API覆盖mapper和reducer的org.apache.hadoop.mapreduce
。在这些方法中,您可以从每个映射器或缩减器中发出累计的总和/计数。
此外,您需要将减速器数量限制为1,以便获得多个映射器生成的所有总和的全局总和。
为了更清晰,请参阅以下代码:
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class AggregationExample extends Configured implements Tool {
/**
* This is Mapper.
*
*/
public static class MapJob extends Mapper<LongWritable, Text, Text, Text> {
private Text outputKey = new Text();
private Text outputValue = new Text();
private double sum;
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
try {
// say that you need to sum up the value part
sum+= Double.valueOf(value);
}
@Override
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
// emit out the sum per mapper
outputKey.set(sum);
context.write(outputKey, outputValue);// Notice that the outputValue is empty
cleanup(context);
}
}
/**
* This is Reducer.
*
*/
public static class ReduceJob extends Reducer<Text, Text, Text, Text> {
private Text outputKey = new Text();
private Text outputValue = new Text();
private double sum;
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException,
InterruptedException {
// summation of values from each mapper
sum += Double.valueOf(key.toString());
}
@Override
public void run(Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
}
// emit out the global sums
outputKey.set(sum);
context.write(outputKey, outputValue);
cleanup(context);
}
}
@Override
public int run(String[] args) throws Exception {
try {
Configuration conf = getConf();
// output key and value separator is empty as in final output only
// key is emitted and value is empty
conf.set("mapred.textoutputformat.separator", "");
// Configuring mapred to have just one reducer as we need to find
// single sum values from all the inputs
conf.setInt("mapred.tasktracker.reduce.tasks.maximum", 1);
conf.setInt("mapred.reduce.tasks", 1);
Job job = new Job(conf);
job.setJarByClass(AggregationExample.class);
job.setJobName("Aggregation Example");
job.setMapperClass(MapJob.class);
job.setReducerClass(ReduceJob.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, args[0]);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;
} catch (Exception e) {
e.printStackTrace();
return 1;
}
}
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.out
.println("Usage: AggregationExample <comma sparated list of input directories> <output dir>");
System.exit(-1);
}
int result = ToolRunner.run(new AggregationExample(), args);
System.exit(result);
}
}
您可以很好地将此方法映射到您的问题。
答案 1 :(得分:0)
找到解决方案。我用过计数器
http://diveintodata.org/2011/03/15/an-example-of-hadoop-mapreduce-counter/
公共类FlightData {
//enum for counters used by reducers
public static enum FlightCounters {
FLIGHT_COUNT,
FLIGHT_DELAY;
}
public static class MyReducer
extends Reducer<Text, Text,Text,IntWritable> {
public void reduce(Text key, Iterable<Text> values,
Context context
) throws IOException, InterruptedException {
delay1 = Float.parseFloat(origin[5]);
delay2 = Float.parseFloat(dest[5]);
context.getCounter(FlightCounters.FLIGHT_COUNT).increment(1);
context.getCounter(FlightCounters.FLIGHT_DELAY)
.increment((long) (delay1 + delay2));
}
}
public static void main(String[] args) throws Exception{
float flightCount, flightDelay;
job.waitForCompletion(true);
//get the final results updated in counter by all map and reduce tasks
flightCount = job.getCounters()
.findCounter(FlightCounters.FLIGHT_COUNT).getValue();
flightDelay = job.getCounters()
.findCounter(FlightCounters.FLIGHT_DELAY).getValue();
}
}