Pandas - asof()在DataFrame上的最后一个

时间:2013-02-23 19:21:59

标签: pandas cython

说,我们建立一个df:

import pandas as pd
import random as randy
import numpy as np
df_size = int(1e6)
df = pd.DataFrame({'first':       randy.sample(np.repeat([np.NaN,'Cat','Dog','Bear','Fish'],df_size),df_size),
               'second': randy.sample(np.repeat([np.NaN,np.NaN,'Cat','Dog'],df_size),df_size),
                'value': range(df_size)},
                index=randy.sample(pd.date_range('2013-02-01 09:00:00.000000',periods=1e6,freq='U'),df_size)).sort_index()

它看起来像这样:

                            first   second    value
2013-02-01 09:00:00          Fish    Cat     95409
2013-02-01 09:00:00.000001   Dog     Dog     323089
2013-02-01 09:00:00.000002   Fish    Cat     785925
2013-02-01 09:00:00.000003   Dog     Cat     866171
2013-02-01 09:00:00.000004   nan     nan     665702
2013-02-01 09:00:00.000005   Cat     nan     104257
2013-02-01 09:00:00.000006   nan     nan     152926
2013-02-01 09:00:00.000007   Bear    Cat     707747

我想要的是“第二列”中的每个值,我想要第一个的最后一个'值'。

                            first   second   value  new_value
2013-02-01 09:00:00         Fish     Cat     95409    NaN
2013-02-01 09:00:00.000001   Dog     Dog     323089   323089
2013-02-01 09:00:00.000002   Fish    Cat     785925   NaN
2013-02-01 09:00:00.000003   Dog     Cat     866171   NaN
2013-02-01 09:00:00.000004   nan     nan     665702   NaN
2013-02-01 09:00:00.000005   Cat     nan     104257   NaN
2013-02-01 09:00:00.000006   nan     nan     152926   NaN
2013-02-01 09:00:00.000007   Bear    Cat     707747   104257

也许,这不是绝对最好的例子,但在底部,当'第二'是'猫'时,我想要'第一'是'猫'的最新价值

真正的数据集有1000多个类别,因此循环遍历符号并执行asof()似乎过于昂贵。我在Cython中传递字符串从来没有运气,但我想将符号映射到整数并做一个暴力循环会起作用 - 我希望有更多的pythonic。 (那仍然相当快)

参考,有点脆弱的Cython黑客将是:

%%cython
import numpy as np
import sys
cimport cython
cimport numpy as np

ctypedef np.double_t DTYPE_t

def last_of(np.ndarray[DTYPE_t, ndim=1] some_values,np.ndarray[long, ndim=1] first_sym,np.ndarray[long, ndim=1] second_sym):
    cdef long val_len = some_values.shape[0], sym1_len = first_sym.shape[0], sym2_len = second_sym.shape[0], i = 0
    assert(sym1_len==sym2_len)
    assert(val_len==sym1_len)
    cdef int enum_space_size = max(first_sym)+1

    cdef np.ndarray[DTYPE_t, ndim=1] last_values = np.zeros(enum_space_size, dtype=np.double) * np.NaN
    cdef np.ndarray[DTYPE_t, ndim=1] res = np.zeros(val_len, dtype=np.double) * np.NaN
    for i in range(0,val_len):
        if first_sym[i]>=0:
            last_values[first_sym[i]] = some_values[i]
        if second_sym[i]<0 or second_sym[i]>=enum_space_size:
            res[i] = np.NaN
        else:
            res[i] = last_values[second_sym[i]]
    return res

然后有些词汇取代废话:

syms= unique(df['first'].values)
enum_dict = dict(zip(syms,range(0,len(syms))))
enum_dict['nan'] = -1
df['enum_first'] = df['first'].replace(enum_dict)
df['enum_second'] = df['second'].replace(enum_dict)
df['last_value'] = last_of(df.value.values*1.0,df.enum_first.values.astype(int64),df.enum_second.values.astype(int64))

这有一个问题,如果'第二列'有任何值不在第一列,你就会遇到问题。 (我不确定一个快速的方法来解决这个问题......如果你把'驴'添加到第二个那里)

对于整个混乱,每1000万行的cythonic愚蠢版本约为21秒,但对于cython部分只有~2。 (可以更快地获得相当数量)

@HYRY - 我认为这是一个非常可靠的解决方案;在一台拥有1000万行的DF上,在我的笔记本电脑上,这对我来说需要大约30秒。

鉴于我不知道一个简单的方法来处理第二个列表除了一个相当昂贵的isin之外没有第一个列表的条目,我认为HYRY的python版本非常好。

2 个答案:

答案 0 :(得分:3)

如何使用dict保留每个类别的最后一个值,并将其放在DataFrame中的所有行中:

import pandas as pd
import random as randy
import numpy as np
np.random.seed(1)
df_size = int(1e2)
df = pd.DataFrame({'first':       randy.sample(np.repeat([None,'Cat','Dog','Bear','Fish'],df_size),df_size),
               'second': randy.sample(np.repeat([None,None,'Cat','Dog'],df_size),df_size),
                'value': range(df_size)},
                index=randy.sample(pd.date_range('2013-02-01 09:00:00.000000',periods=1e6,freq='U'),df_size)).sort_index()

last_values = {}
new_values = []
for row in df.itertuples():
    t, f, s, v = row    
    last_values[f] = v
    if s is None:
        new_values.append(None)
    else:
        new_values.append(last_values.get(s, None))
df["new_value"] = new_values

结果是

                          first second  value new_value
2013-02-01 09:00:00.010373   Cat   None     87      None
2013-02-01 09:00:00.013015   Cat    Dog     69      None
2013-02-01 09:00:00.024910  Fish    Cat      1        69
2013-02-01 09:00:00.025943   Cat   None     98      None
2013-02-01 09:00:00.041318  Fish    Dog     66      None
2013-02-01 09:00:00.057894  None   None     36      None
2013-02-01 09:00:00.059678  None   None     50      None
2013-02-01 09:00:00.067228  Bear   None     38      None
2013-02-01 09:00:00.095867  Bear    Cat     84        98
2013-02-01 09:00:00.096867   Dog    Cat     97        98
2013-02-01 09:00:00.101540   Dog    Dog     76        76
2013-02-01 09:00:00.106753   Dog   None     22      None
2013-02-01 09:00:00.138936  None   None      8      None
2013-02-01 09:00:00.139273  Bear    Cat      2        98
2013-02-01 09:00:00.143180  Fish   None     94      None
2013-02-01 09:00:00.184757  None    Cat     73        98
2013-02-01 09:00:00.193063  None   None      5      None
2013-02-01 09:00:00.231056  Fish    Cat     62        98
2013-02-01 09:00:00.237658  None   None     64      None
2013-02-01 09:00:00.240178  Bear    Dog     80        22

答案 1 :(得分:0)

老问题我知道,但这是一个避免任何Python循环的解决方案。 第一步是为每个类别获取'value'的时间序列。 您可以通过取消堆叠来执行此操作:

first_values = df.dropna(subset=['first']).set_index('first', append=True).value.unstack()    
second_values = df.dropna(subset=['second']).set_index('second', append=True).value.unstack()

请注意,只有当列包含真正的NaN值而不是'nan'字符串时才会有效(如果需要,请执行df = df.replace('nan', np.nan)。)

然后,您可以通过向前填充first_values获取最后一个第一个值,重新编制类似second_values的索引,再次堆叠并使用原始'time', 'second'对索引到结果中:

ix = pd.MultiIndex.from_arrays([df.index, df.second])
new_value = first_values.ffill().reindex_like(second_values).stack().reindex(ix)
df['new_value'] = new_value.values

In [1649]:    df
Out[1649]:
                           first    second  value   new_value
2013-02-01 09:00:00.000000  Fish    Cat     95409   NaN
2013-02-01 09:00:00.000001  Dog     Dog     323089  323089
2013-02-01 09:00:00.000002  Fish    Cat     785925  NaN
2013-02-01 09:00:00.000003  Dog     Cat     866171  NaN
2013-02-01 09:00:00.000004  NaN     NaN     665702  NaN
2013-02-01 09:00:00.000005  Cat     NaN     104257  NaN
2013-02-01 09:00:00.000006  NaN     NaN     152926  NaN
2013-02-01 09:00:00.000007  Bear    Cat     707747  104257