我需要重新组织包含大多数重复数据的csv文件中的数据。我在数据框中将数据导入到R中,但我遇到以下问题:
ID Language Author Keyword
12 eng Rob COLOR=Red
12 eng Rob SIZE=Large
12 eng Rob DD=1
15 eng John COLOR=Red
15 eng John SIZE=Medium
15 eng John DD=2
我需要做的是将其转换为一行,每个关键字都在一个单独的列中
ID Language Author COLOR SIZE DD
12 eng Rob Red Large 1
有什么想法吗?
答案 0 :(得分:7)
使用reshape2
包这很简单:
tt
library("reshape2")
tt <- cbind(tt, colsplit(tt$Keyword, "=", c("Name", "Value")))
tt_new <- dcast(tt, ID + Language + Author ~ Name, value.var="Value")
给出了
> tt_new
ID Language Author COLOR DD SIZE
1 12 eng Rob Red 1 Large
2 15 eng John Red 2 Medium
答案 1 :(得分:6)
使用plyr
ans strsplit
您可以执行以下操作:
library(plyr)
res <- ddply(dat,.(ID,Language,Author),function(x){
unlist(sapply(strsplit(x$Keyword,'='),'[',2))
})
colnames(res)[4:6] <- c('COLOR','SIZE','DD')
ID Language Author COLOR SIZE DD
1 12 eng Rob Red Large 1
2 15 eng John Red Medium 2
编辑:这是一个解决@Brian关注问题的概括:
res <- ddply(dat,.(ID,Language,Author), function(x){
kv <- strsplit(x$Keyword, '=')
setNames(sapply(kv, `[`, 2),
sapply(kv, `[`, 1)) })
答案 2 :(得分:1)
使用reshape2
:
tt <- read.table(header=T,text='ID Language Author Keyword
12 eng Rob COLOR=Red
12 eng Rob SIZE=Large
12 eng Rob DD=1
15 eng John COLOR=Red
15 eng John SIZE=Medium
15 eng John DD=2')
tt$Keyword <- as.character(tt$Keyword)
tt <- transform(tt, key_val = lapply(tt$Keyword,function(x) strsplit(x,'=')[[1]][2]),
key_var = lapply(tt$Keyword,function(x) strsplit(x,'=')[[1]][1]))
tt_new <- dcast (tt, ID + Language + Author ~ key_var, value.var='key_val')