如何分析数据框并获得大于0.05的数据框?

时间:2013-02-22 11:26:05

标签: r dataframe

我的数据框有不同的p.value值,包括缺失值(NA): pvalue2 = p值[1:679,3:10] 我需要分析它和大于0.05的数字我需要写“正常”e值小于0.05我需要写入值。我希望结果写在另一个数据框中。 这是我的代码:

a=data.frame()
    for (i in 1:nrow(pvalue2)) {
      for (j in 1:ncol(pvalue2)){
        if (pvalue2[i,j] >=0.05) {
          print (a[i,j]=="Normal")
        } else {print a[i,j]==pvalue2[i,j] }
      }
    } 

有人可以帮我吗?

4 个答案:

答案 0 :(得分:2)

a <- ifelse(as.matrix(pvalue2) < .05, as.matrix(pvalue2), "normal")
a <- as.data.frame(a)

由于R是一种未编译的高级语言,因此for循环在增长时具有使非常慢的趋势。通过使用向量化函数(在内部以较低级别的语言进行循环),可以加快代码速度并使其更具可读性。

运行示例

> set.seed(123)
> pvalue2 <- matrix(runif(18)/10, 6, 3)
> pvalue2[sample(length(pvalue2), 4)] <- NA
> pvalue2 <- as.data.frame(pvalue2)
> pvalue2

          V1         V2          V3
1 0.02875775 0.05281055 0.067757064
2 0.07883051 0.08924190 0.057263340
3 0.04089769 0.05514350          NA
4 0.08830174 0.04566147 0.089982497
5 0.09404673         NA          NA
6         NA 0.04533342 0.004205953

> ifelse(as.matrix(pvalue2) < .05, as.matrix(pvalue2), "normal")

     V1                   V2                   V3                   
[1,] "0.0287577520124614" "normal"             "normal"             
[2,] "normal"             "normal"             "normal"             
[3,] "0.04089769218117"   "normal"             NA                   
[4,] "normal"             "0.0456614735303447" "normal"             
[5,] "normal"             NA                   NA                   
[6,] NA                   "0.0453334156190977" "0.00420595335308462"

答案 1 :(得分:1)

我想,你的p值存储为因子。您需要先将它们转换为数值。

tmp <- sapply(pvalue2, function(x) as.numeric(as.character(x)))

现在,可以使用对象tmp

# copy the existing data frame to a new object
df2 <- pvalue2
# fill it with "Normal"
df2[ , ] <- "Normal"
# replace with values from tmp if value < 0.05
df2[tmp < 0.05] <- pvalue2[tmp < 0.05]

答案 2 :(得分:0)

假设你的第一个数据框叫做df

df_2<-data.frame(matrix(nrow=nrow(df),ncol=ncol(df)));
for (i in 1:ncol(df)){
    df_2[,i]<-ifelse(is.na(df[,i]) == FALSE && df[,i] >= .05,"Normal",ifelse(is.na(df[,i])==FALSE && df[,i] < 0.05,df[,i],NA))
}

答案 3 :(得分:0)

set.seed(42)
df <- data.frame(a=runif(10,0,0.1),b=runif(10,0,0.1))
#since there are only numeric values
#you can transform to matrix
m <- as.matrix(df)

#new matrix
m2 <- m

m2[m>0.05] <- "Normal"

df2 <- as.data.frame(m2)

                    a                  b
1              Normal  0.045774177624844
2              Normal             Normal
3  0.0286139534786344             Normal
4              Normal 0.0255428824340925
5              Normal 0.0462292822543532
6              Normal             Normal
7              Normal             Normal
8   0.013466659723781 0.0117487361654639
9              Normal 0.0474997081561014
10             Normal             Normal