如何在R :: lattice :: layerplot上显示投影地图?

时间:2013-02-13 23:54:26

标签: r plot maps lattice netcdf

摘要:我可以在lattice::layerplot上显示一个lon-lat地图,我可以在spam::image上显示一个Lambert共形圆锥(LCC)地图。如何在lattice::layerplot上显示LCC地图?如何不遵循的示例 - 赞赏修复(甚至只是调试)。

细节:

我一直在使用格子图形(通过latticeExtrarasterVis)成功显示未投影的lon-lat全球大气数据,这些数据运作良好(尽管我对{{1}非常感兴趣} / ggplot)。特别是,我能够用地图叠加这些图,这对我正在做的工作至关重要。但是,我目前无法将ggmap用于某些区域数据投影LCC:数据图,但我无法获得叠加的地图。我可以通过更粗略的方式来做到这一点,但我更愿意知道如何在lattice::layerplot或类似方法(例如lattice/rasterVis)中执行此操作。两个几乎自成一体的例子如下......但如果您已经知道如何执行此操作,请告诉我,我将跳过调试。 (我在一个项目上落后了。)

netCDF数据ggplot/ggmap附带CRAN package=M3 ...除了M3提供它

ozone_lcc.nc

该文件扩展名(system.file("extdata/ozone_lcc.ncf", package="M3") )目前导致CRAN package=raster出现问题(请参阅this post)。您可以重命名该文件(并将其置于当前工作目录中),也可以下载just that file(270 kB),或者您可以从M3 tarball获取它(但请记住重命名它!) 。

然后您可以运行以下任何示例(提供(IIRC)您没有运行Windows,其中package = .ncf将无法构建(但ICBW)),根据需要更改常量以适应您的系统。示例1生成一个我知道的类型的地图(根据以前的经验)将与M3中的raster一起使用;但是,在这种情况下,地图和数据/栅格的坐标值不匹配。示例2使用旧式基础图形,实际上绘制数据和地图;遗憾的是,我不知道如何制作它在levelplot上生成叠加的地图。我想让这段代码与其他使用levelplotraster的代码一起使用,这是一个问题。

示例1:生成类似this

的输出
levelplot

示例2:生成类似this

的输出
##### start example 1 #####

library("M3")        # http://cran.r-project.org/web/packages/M3/
library("rasterVis") # http://cran.r-project.org/web/packages/rasterVis/

## Use an example file with projection=Lambert conformal conic.
# lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3")
lcc.file <- "./ozone_lcc.nc" # unfortunate problem with raster::raster
lcc.proj4 <- M3::get.proj.info.M3(lcc.file)
lcc.proj4   # debugging
# [1] "+proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000"
# Note +lat_0=40 +lat_1=33 +lat_2=45 for maps::map@projection (below)
lcc.crs <- sp::CRS(lcc.proj4)
lcc.pdf <- "./ozone_lcc.example1.pdf" # for output

## Read in variable with daily ozone.
# o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs)
# ozone_lcc.nc has 4 timesteps, choose 1 at random
o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs, level=1)
o3.raster@crs <- lcc.crs # why does the above assignment not take?
# start debugging
o3.raster
summary(coordinates(o3.raster)) # thanks, Felix Andrews!
M3::get.grid.info.M3(lcc.file)
#   end debugging

# > o3.raster
# class       : RasterLayer 
# band        : 1 
# dimensions  : 112, 148, 16576  (nrow, ncol, ncell)
# resolution  : 1, 1  (x, y)
# extent      : 0.5, 148.5, 0.5, 112.5  (xmin, xmax, ymin, ymax)
# coord. ref. : +proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000 
# data source : .../ozone_lcc.nc 
# names       : O3 
# z-value     : 1 
# zvar        : O3 
# level       : 1 
# > summary(coordinates(o3.raster))
#        x                y         
#  Min.   :  1.00   Min.   :  1.00  
#  1st Qu.: 37.75   1st Qu.: 28.75  
#  Median : 74.50   Median : 56.50  
#  Mean   : 74.50   Mean   : 56.50  
#  3rd Qu.:111.25   3rd Qu.: 84.25  
#  Max.   :148.00   Max.   :112.00  
# > M3::get.grid.info.M3(lcc.file)
# $x.orig
# [1] -2736000
# $y.orig
# [1] -2088000
# $x.cell.width
# [1] 36000
# $y.cell.width
# [1] 36000
# $hz.units
# [1] "m"
# $ncols
# [1] 148
# $nrows
# [1] 112
# $nlays
# [1] 1

# The grid (`coordinates(o3.raster)`) is integers, because this
# data is stored using the IOAPI convention. IOAPI makes the grid
# Cartesian by using an (approximately) equiareal projection (LCC)
# and abstracting grid positioning to metadata stored in netCDF
# global attributes. Some of this spatial metadata can be accessed
# by `M3::get.grid.info.M3` (above), and some can be accessed via
# the coordinate reference system (`CRS`, see `lcc.proj4` above)

## Get US state boundaries in projection units.
state.map <- maps::map(
  database="state", projection="lambert", par=c(33,45), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject
state.map.shp <-
  maptools::map2SpatialLines(state.map, proj4string=lcc.crs)
# start debugging
# thanks, Felix Andrews!
class(state.map.shp)
summary(do.call("rbind",
  unlist(coordinates(state.map.shp), recursive=FALSE)))
#   end debugging

# > class(state.map.shp)
# [1] "SpatialLines"
# attr(,"package")
# [1] "sp"
# >     summary(do.call("rbind", 
# +       unlist(coordinates(state.map.shp), recursive=FALSE)))
#        V1                  V2         
#  Min.   :-0.234093   Min.   :-0.9169  
#  1st Qu.:-0.000333   1st Qu.:-0.8289  
#  Median : 0.080378   Median :-0.7660  
#  Mean   : 0.058492   Mean   :-0.7711  
#  3rd Qu.: 0.162993   3rd Qu.:-0.7116  
#  Max.   : 0.221294   Max.   :-0.6343  
# I can't see how to relate these coordinates to `coordinates(o3.raster)`

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.shp, lwd=0.8, col='darkgray'))

dev.off()
# change this for viewing PDF on your system
system(sprintf("xpdf %s", lcc.pdf))
# data looks correct, map invisible

## Try again, with lambert(40,33)
state.map <- maps::map(
  database="state", projection="lambert", par=c(40,33), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject
state.map.shp <-
  maptools::map2SpatialLines(state.map, proj4string=lcc.crs)
# start debugging
summary(do.call("rbind", 
  unlist(coordinates(state.map.shp), recursive=FALSE)))
#   end debugging

# >     summary(do.call("rbind", 
# +       unlist(coordinates(state.map.shp), recursive=FALSE)))
#        V1                  V2         
#  Min.   :-0.2226344   Min.   :-0.9124  
#  1st Qu.:-0.0003149   1st Qu.:-0.8295  
#  Median : 0.0763322   Median :-0.7706  
#  Mean   : 0.0553948   Mean   :-0.7752  
#  3rd Qu.: 0.1546465   3rd Qu.:-0.7190  
#  Max.   : 0.2112617   Max.   :-0.6458  
# no real change from previous `coordinates(state.map.shp)`

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.shp, lwd=0.8, col='darkgray'))

dev.off()
system(sprintf("xpdf %s", lcc.pdf))
# as expected, same as before: data looks correct, map invisible

#####   end example 1 #####

但是我无法看到如何从##### start example 2 ##### # Following adapted from what is installed in my # .../R/x86_64-pc-linux-gnu-library/2.14/m3AqfigExampleScript.r # (probably by my sysadmin), which also greatly resembles # https://wiki.epa.gov/amad/index.php/R_packages_developed_in_AMAD # which is behind a firewall :-( ## EXAMPLE WITH LAMBERT CONIC CONFORMAL FILE. library("M3") library("aqfig") # http://cran.r-project.org/web/packages/aqfig/ ## Use an example file with LCC projection: either local download ... lcc.file <- "./ozone_lcc.nc" ## ... or as installed by package=M3: # lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3") ## Choose the one that works for you. lcc.pdf <- "./ozone_lcc.example2.pdf" # for output ## READ AND PLOT OZONE FROM FILE WITH LCC PROJECTION. ## Read in variable with daily ozone. Note that we can give dates ## rather than date-times, and that will include all time steps ## anytime during those days. Or, we can give lower and upper bounds ## and all time steps between these will be taken. o3 <- M3::get.M3.var( file=lcc.file, var="O3", hz.units="m", ldatetime=as.Date("2001-07-01"), udatetime=as.Date("2001-07-04")) # start debugging class(o3) summary(o3) summary(o3$x.cell.ctr) # end debugging # > class(o3) # [1] "list" # > summary(o3) # Length Class Mode # data 66304 -none- numeric # data.units 1 -none- character # x.cell.ctr 148 -none- numeric # y.cell.ctr 112 -none- numeric # hz.units 1 -none- character # rows 112 -none- numeric # cols 148 -none- numeric # layers 1 -none- numeric # datetime 4 POSIXct numeric # > summary(o3$x.cell.ctr) # Min. 1st Qu. Median Mean 3rd Qu. Max. # -2718000 -1395000 -72000 -72000 1251000 2574000 # Note how these grid coordinates relate to the IOAPI metadata above: # min(o3$x.cell.ctr) == -2718000 # == -2736000 + (36000/2) == x.orig + (x.cell.width/2) ## Get colors and map boundaries for plot. library("fields") col.rng <- tim.colors(20) detach("package:fields") ## Get state boundaries in projection units. map.lines <- M3::get.map.lines.M3.proj( file=lcc.file, database="state", units="m") # start debugging class(map.lines) summary(map.lines) summary(map.lines$coords) # end debugging # > class(map.lines) # [1] "list" # > summary(map.lines) # Length Class Mode # coords 23374 -none- numeric # units 1 -none- character # > summary(map.lines$coords) # x y # Min. :-2272238 Min. :-1567156 # 1st Qu.: 94244 1st Qu.: -673953 # Median : 913204 Median : -26948 # Mean : 689997 Mean : -84644 # 3rd Qu.: 1744969 3rd Qu.: 524531 # Max. : 2322260 Max. : 1265778 # NA's :168 NA's :168 ## Set color boundaries to encompass the complete data range. z.rng <- range(as.vector(o3$data)) ## Make a color tile plot of the ozone for the first day (2001-07-01). pdf(file=lcc.pdf) image(o3$x.cell.ctr, o3$y.cell.ctr, o3$data[,,1,1], col=col.rng, zlim=z.rng, xlab="x-coord (m)", ylab="y-coord (m)") ## Put date-time string and chemical name (O3) into a format I can use ## to label the actual figure. date.str <- format(o3$datetime[1], "%Y-%m-%d") title(main=bquote(paste(O[3], " on ", .(date.str), sep=""))) ## Put the state boundaries on the plot. lines(map.lines$coords) ## Add legend to right of plot. NOTE: YOU CANNOT ADD TO THE PLOT ## AFTER USING vertical.image.legend(). Before making a new plot, ## open a new device or turn this device off. vertical.image.legend(zlim=z.rng, col=col.rng) dev.off() # close the plot if you haven't already, ... # ... and change the following to display PDFs on your system. system(sprintf("xpdf %s", lcc.pdf)) # data displays with state map ##### end example 2 ##### 返回到M3::get.map.lines.M3.proj想要的SpatialLines的简单矩阵(等等,但不多),更不用说sp::sp.lines想要。 (我已经足够新手找到格子文件而且难以理解。)此外,我宁愿避免手动进行上面的IOAPI转换(尽管我当然更愿意这样做而不是跳过旧式图形的箍) )。

1 个答案:

答案 0 :(得分:2)

这样做的一种方法虽然很难看,但是使用线性IOAPI变换来“修复”从state.map获得的maps::map中的坐标。如,

示例3:生成类似this

的输出
##### start example 3 #####

library("M3")        # http://cran.r-project.org/web/packages/M3/
library("rasterVis") # http://cran.r-project.org/web/packages/rasterVis/

## Use an example file with projection=Lambert conformal conic.
# lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3")
# See notes in question regarding unfortunate problem with raster::raster,
# and remember to download or rename the file (symlinking alone will not work).
lcc.file <- "./ozone_lcc.nc"

lcc.proj4 <- M3::get.proj.info.M3(lcc.file)
lcc.proj4   # debugging
# [1] "+proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000"
# Note +lat_0=40 +lat_1=33 +lat_2=45 for maps::map@projection (below)
lcc.crs <- sp::CRS(lcc.proj4)
lcc.pdf <- "./ozone_lcc.example3.pdf" # for output

## Read in variable with daily ozone.
# o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs)
# ozone_lcc.nc has 4 timesteps, choose 1 at random
o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs, level=1)
o3.raster@crs <- lcc.crs # why does the above assignment not take?
# start debugging
o3.raster
summary(coordinates(o3.raster)) # thanks, Felix Andrews!
M3::get.grid.info.M3(lcc.file)
#   end debugging

# > o3.raster
# class       : RasterLayer 
# band        : 1 
# dimensions  : 112, 148, 16576  (nrow, ncol, ncell)
# resolution  : 1, 1  (x, y)
# extent      : 0.5, 148.5, 0.5, 112.5  (xmin, xmax, ymin, ymax)
# coord. ref. : +proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000 
# data source : .../ozone_lcc.nc 
# names       : O3 
# z-value     : 1 
# zvar        : O3 
# level       : 1 

# > summary(coordinates(o3.raster))
#        x                y         
#  Min.   :  1.00   Min.   :  1.00  
#  1st Qu.: 37.75   1st Qu.: 28.75  
#  Median : 74.50   Median : 56.50  
#  Mean   : 74.50   Mean   : 56.50  
#  3rd Qu.:111.25   3rd Qu.: 84.25  
#  Max.   :148.00   Max.   :112.00  

# > M3::get.grid.info.M3(lcc.file)
# $x.orig
# [1] -2736000
# $y.orig
# [1] -2088000
# $x.cell.width
# [1] 36000
# $y.cell.width
# [1] 36000
# $hz.units
# [1] "m"
# $ncols
# [1] 148
# $nrows
# [1] 112
# $nlays
# [1] 1

# The grid (`coordinates(o3.raster)`) is integers, because this
# data is stored using the IOAPI convention. IOAPI makes the grid
# Cartesian by using an (approximately) equiareal projection (LCC)
# and abstracting grid positioning to metadata stored in netCDF
# global attributes. Some of this spatial metadata can be accessed
# by `M3::get.grid.info.M3` (above), and some can be accessed via
# the coordinate reference system (`CRS`, see `lcc.proj4` above)

## Get US state boundaries in projection units.
state.map <- maps::map(
  database="state", projection="lambert", par=c(33,45), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject

# replace its coordinates with
metadata.coords.IOAPI.list <- M3::get.grid.info.M3(lcc.file)
metadata.coords.IOAPI.x.orig <- metadata.coords.IOAPI.list$x.orig
metadata.coords.IOAPI.y.orig <- metadata.coords.IOAPI.list$y.orig
metadata.coords.IOAPI.x.cell.width <- metadata.coords.IOAPI.list$x.cell.width
metadata.coords.IOAPI.y.cell.width <- metadata.coords.IOAPI.list$y.cell.width
map.lines <- M3::get.map.lines.M3.proj(
  file=lcc.file, database="state", units="m")
map.lines.coords.IOAPI.x <-
  (map.lines$coords[,1] - metadata.coords.IOAPI.x.orig)/metadata.coords.IOAPI.x.cell.width
map.lines.coords.IOAPI.y <-
  (map.lines$coords[,2] - metadata.coords.IOAPI.y.orig)/metadata.coords.IOAPI.y.cell.width
map.lines.coords.IOAPI <- 
  cbind(map.lines.coords.IOAPI.x, map.lines.coords.IOAPI.y)
# start debugging
class(map.lines.coords.IOAPI)
summary(map.lines.coords.IOAPI)
#   end debugging

# >     class(map.lines.coords.IOAPI)
# [1] "matrix"
# >     summary(map.lines.coords.IOAPI)
#  map.lines.coords.IOAPI.x map.lines.coords.IOAPI.y
#  Min.   : 12.88           Min.   :14.47           
#  1st Qu.: 78.62           1st Qu.:39.28           
#  Median :101.37           Median :57.25           
#  Mean   : 95.17           Mean   :55.65           
#  3rd Qu.:124.47           3rd Qu.:72.57           
#  Max.   :140.51           Max.   :93.16           
#  NA's   :168              NA's   :168        

coordinates(state.map.shp) <- map.lines.coords.IOAPI # FAIL:
> Error in `coordinates<-`(`*tmp*`, value = c(99.0242231482288, 99.1277727928691,  : 
>   setting coordinates cannot be done on Spatial objects, where they have already been set

state.map.IOAPI <- state.map # copy
state.map.IOAPI$x <- map.lines.coords.IOAPI.x
state.map.IOAPI$y <- map.lines.coords.IOAPI.y
state.map.IOAPI$range <- c(
  min(map.lines.coords.IOAPI.x),
  max(map.lines.coords.IOAPI.x),
  min(map.lines.coords.IOAPI.y),
  max(map.lines.coords.IOAPI.y))
state.map.IOAPI.shp <-
  maptools::map2SpatialLines(state.map.IOAPI, proj4string=lcc.crs)
# start debugging
# thanks, Felix Andrews!
class(state.map.IOAPI.shp)
summary(do.call("rbind",
  unlist(coordinates(state.map.IOAPI.shp), recursive=FALSE)))
#   end debugging

# > class(state.map.IOAPI.shp)
# [1] "SpatialLines"
# attr(,"package")
# [1] "sp"

# > summary(do.call("rbind",
# +   unlist(coordinates(state.map.IOAPI.shp), recursive=FALSE)))
#        V1               V2       
#  Min.   : 12.88   Min.   :14.47  
#  1st Qu.: 78.62   1st Qu.:39.28  
#  Median :101.37   Median :57.25  
#  Mean   : 95.17   Mean   :55.65  
#  3rd Qu.:124.47   3rd Qu.:72.57  
#  Max.   :140.51   Max.   :93.16  

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.IOAPI.shp, lwd=0.8, col='darkgray'))
dev.off()
# change this for viewing PDF on your system
system(sprintf("xpdf %s", lcc.pdf))

#####   end example 3 #####