我正在用Python进行氩气液体的分子动力学模拟。我有一个稳定版本运行,但它运行缓慢超过100个原子。我发现瓶颈是以下嵌套的for循环。这是一个强制计算,放在从我的main.py脚本调用的函数中:
def computeForce(currentPositions):
potentialEnergy = 0
force = zeros((NUMBER_PARTICLES,3))
for iParticle in range(0,NUMBER_PARTICLES-1):
for jParticle in range(iParticle + 1, NUMBER_PARTICLES):
distance = currentPositions[iParticle] - currentPositions[jParticle]
distance = distance - BOX_LENGTH * (distance/BOX_LENGTH).round()
#note: this is so much faster than scipy.dot()
distanceSquared = distance[0]*distance[0] + distance[1]*distance[1] + distance[2]*distance[2]
if distanceSquared < CUT_OFF_RADIUS_SQUARED:
r2i = 1. / distanceSquared
r6i = r2i*r2i*r2i
lennardJones = 48. * r2i * r6i * (r6i - 0.5)
force[iParticle] += lennardJones*distance
force[jParticle] -= lennardJones*distance
potentialEnergy += 4.* r6i * (r6i - 1.) - CUT_OFF_ENERGY
return(force,potentialEnergy)
CAPITAL字母中的变量是常量,在config.py文件中定义。 “currentPositions”是一个3个按粒子数矩阵。
我已经使用scipy.weave实现了嵌套for循环的一个版本,该版本的灵感来自这个网站:http://www.scipy.org/PerformancePython。
但是,我不喜欢失去灵活性。我对这个for循环“向量化”很感兴趣。我只是不知道它是如何工作的。任何人都可以给我一个线索或教导这个的好教程吗?
答案 0 :(得分:3)
在纯python中编写像MD引擎这样的东西会很慢。我会看看Numba(http://numba.pydata.org/)或Cython(http://cython.org/)。在Cython方面,我使用cython编写了一个简单的Langevin Dynamics引擎,可以作为一个例子来帮助你入门:
https://bitbucket.org/joshua.adelman/pylangevin-integrator
我非常喜欢的另一个选择是使用OpenMM。有一个python包装器,允许您将MD引擎的所有部分组合在一起,实现自定义力等。它还具有针对GPU设备的能力:
总的来说,有很多高度调整的MD代码,除非你出于某种一般教育目的这样做,否则从头开始编写自己的代码是没有意义的。一些主要代码,仅举几例:
答案 1 :(得分:3)
以下是我的代码的矢量化版本。对于1000点的数据集,我的代码大约比原始代码快50倍:
In [89]: xyz = 30 * np.random.uniform(size=(1000, 3))
In [90]: %timeit a0, b0 = computeForce(xyz)
1 loops, best of 3: 7.61 s per loop
In [91]: %timeit a, b = computeForceVector(xyz)
10 loops, best of 3: 139 ms per loop
代码:
from numpy import zeros
NUMBER_PARTICLES = 1000
BOX_LENGTH = 100
CUT_OFF_ENERGY = 1
CUT_OFF_RADIUS_SQUARED = 100
def computeForceVector(currentPositions):
potentialEnergy = 0
force = zeros((NUMBER_PARTICLES, 3))
for iParticle in range(0, NUMBER_PARTICLES - 1):
positionsJ = currentPositions[iParticle + 1:, :]
distance = currentPositions[iParticle, :] - positionsJ
distance = distance - BOX_LENGTH * (distance / BOX_LENGTH).round()
distanceSquared = (distance**2).sum(axis=1)
ind = distanceSquared < CUT_OFF_RADIUS_SQUARED
if ind.any():
r2i = 1. / distanceSquared[ind]
r6i = r2i * r2i * r2i
lennardJones = 48. * r2i * r6i * (r6i - 0.5)
ljdist = lennardJones[:, None] * distance[ind, :]
force[iParticle, :] += (ljdist).sum(axis=0)
force[iParticle+1:, :][ind, :] -= ljdist
potentialEnergy += (4.* r6i * (r6i - 1.) - CUT_OFF_ENERGY).sum()
return (force, potentialEnergy)
我还检查过代码会产生相同的结果
答案 2 :(得分:1)
为了使这篇文章完整,我在C代码中编译了我的实现。请注意,您需要导入编织和转换器才能工作。而且,weave现在只适用于python 2.7。再次感谢所有的帮助!这比矢量化版本快10倍。
from scipy import weave
from scipy.weave import converters
def computeForceC(currentPositions):
code = """
using namespace blitz;
Array<double,1> distance(3);
double distanceSquared, r2i, r6i, lennardJones;
double potentialEnergy = 0.;
for( int iParticle = 0; iParticle < (NUMBER_PARTICLES - 1); iParticle++){
for( int jParticle = iParticle + 1; jParticle < NUMBER_PARTICLES; jParticle++){
distance(0) = currentPositions(iParticle,0)-currentPositions(jParticle,0);
distance(0) = distance(0) - BOX_LENGTH * round(distance(0)/BOX_LENGTH);
distance(1) = currentPositions(iParticle,1)-currentPositions(jParticle,1);
distance(1) = distance(1) - BOX_LENGTH * round(distance(1)/BOX_LENGTH);
distance(2) = currentPositions(iParticle,2)-currentPositions(jParticle,2);
distance(2) = distance(2) - BOX_LENGTH * round(distance(2)/BOX_LENGTH);
distanceSquared = distance(0)*distance(0) + distance(1)*distance(1) + distance(2)*distance(2);
if(distanceSquared < CUT_OFF_RADIUS_SQUARED){
r2i = 1./distanceSquared;
r6i = r2i * r2i * r2i;
lennardJones = 48. * r2i * r6i * (r6i - 0.5);
force(iParticle,0) += lennardJones*distance(0);
force(iParticle,1) += lennardJones*distance(1);
force(iParticle,2) += lennardJones*distance(2);
force(jParticle,0) -= lennardJones*distance(0);
force(jParticle,1) -= lennardJones*distance(1);
force(jParticle,2) -= lennardJones*distance(2);
potentialEnergy += 4.* r6i * (r6i - 1.)-CUT_OFF_ENERGY;
}
}//end inner for loop
}//end outer for loop
return_val = potentialEnergy;
"""
#args that are passed into weave.inline and created inside computeForce
#potentialEnergy = 0.
force = zeros((NUMBER_PARTICLES,3))
#all args
arguments = ['currentPositions','force','NUMBER_PARTICLES','CUT_OFF_RADIUS_SQUARED','BOX_LENGTH','CUT_OFF_ENERGY']
#evaluate stuff in code
potentialEnergy = weave.inline(code,arguments,type_converters = converters.blitz,compiler = 'gcc')
return force, potentialEnergy