“未定义列已选中” - 尝试从列表中的df中删除na时

时间:2013-02-11 01:00:24

标签: r list lapply na

我试图复制这个解决方案的成功:

remove columns with NAs from all dataframes in list

Remove columns from dataframe where some of values are NA

包含数据框列表:

m1<- structure(list(vPWMETRO = c(1520L, 1520L, 1520L, 1520L, 1520L), 
               vPWPUMA00 = c(500L, 900L, 1000L, 1100L, 1200L), 
               v100 = c(96.1666666666667, 71.4615384615385, 68.6363636363636, 22.5, 64.5), 
               v101 = c(5, 15, NA, NA, NA),
               v102 = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_)),
          .Names = c("vPWMETRO", "vPWPUMA00", "v100", "v101", "v102"), 
          row.names = 26:30, class = "data.frame")

m2<- structure(list(vPWMETRO = c(6440L, 6440L, 6440L, NA, NA), 
               vPWPUMA00 = c(1300L,2100L, 2200L, NA, NA), 
               v100 = c(38.3921568627451, 35, 12.5, NA, NA), 
               v101 = c(NA, NA, NA, NA, NA), 
               v102 = c(38.3333333333333, 68, NA, NA, NA)), 
               .Names = c("vPWMETRO", "vPWPUMA00", "v100", "v101", "v102"), 
          row.names = c("39", "40", "41", "NA", "NA.1"), class = "data.frame")
#views structure
str(m1)
str(m2)

#creates list
snag<- list(v1520=m1, v6440=m2)
str(snag)
#attempts lapply solution
prob1<- lapply(snag, function(y) y[ ,!is.na(y)])

#2nd attempt, same result on just dataframe:
x5$v6440[ , apply(x5$v6440, 2, function(x) !(is.na(x)))]

以便在数据框中删除包含所有NA的列。因此,结果应该是2 df的列表:

v1520:vPWPUMA00,v100,v101

v6440:vPWPUMA00,v100,v102

我看到示例问题的不同之处在于尺寸是1x11而我的尺寸是5x5。我猜这会导致“未定义列”错误,但我不确定。

非常感谢任何帮助或建议。

此致

1 个答案:

答案 0 :(得分:2)

我认为你没有看到正确的问题和答案。

请参阅Remove columns from dataframe where ALL values are NA,这似乎是您想要的。

然后,您可以修改my answer以提供

lapply(snag, Filter, f = function(x){!all(is.na(x))})



$v1520
   vPWMETRO vPWPUMA00     v100 v101
26     1520       500 96.16667    5
27     1520       900 71.46154   15
28     1520      1000 68.63636   NA
29     1520      1100 22.50000   NA
30     1520      1200 64.50000   NA

$v6440
     vPWMETRO vPWPUMA00     v100     v102
39       6440      1300 38.39216 38.33333
40       6440      2100 35.00000 68.00000
41       6440      2200 12.50000       NA
NA         NA        NA       NA       NA
NA.1       NA        NA       NA       NA