用于查找数字数组中的最大差异的算法

时间:2008-09-29 08:55:56

标签: c++ algorithm statistics

我有几百万个数组。

double* const data = new double (3600000);

我需要遍历数组并找到范围(数组中的最大值减去最小值)。然而,有一个问题。我只想找到最小值和最大值在1000个样本之间的范围。

所以我需要找到最大值:范围(数据+ 0,数据+ 1000),范围(数据+ 1,数据+ 1001),范围(数据+ 2,数据+ 1002),....,范围(数据+ 3599000,数据+ 3600000)。

我希望这是有道理的。基本上我可以像上面那样做,但我正在寻找一个更有效的算法,如果存在的话。我认为上面的算法是O(n),但我觉得可以优化。我正在玩的一个想法是跟踪最近的最大值和最小值以及它们的返回距离,然后在必要时才回溯。

我将用C ++编写代码,但伪代码中的一个很好的算法就可以了。另外,如果我想找的这个号码有一个名字,我很想知道它是什么。

感谢。

7 个答案:

答案 0 :(得分:10)

此类问题属于称为流式算法的算法分支。正是对问题的研究不仅需要O(n)解决方案,而且还需要在数据的单次传递中工作。数据作为流输入到算法中,算法无法保存所有数据,然后永远丢失。算法需要得到一些关于数据的答案,例如最小值或中值。

具体而言,您正在流中的窗口中寻找最大值(或更常见的文献 - 最小值)。

Here's a presentation上的article提到这个问题是他们想要解决的问题。它可能会给你一些想法。

我认为解决方案的大纲是这样的 - 在流上保持窗口,在每个步骤中,一个元素插入窗口,一个元素从另一侧移除(滑动窗口)。您实际保留在内存中的项目不是窗口中的所有1000个项目,而是选定的代表,这些项目将成为最低(或最大)的最佳候选者。

阅读文章。这是复杂的,但在2-3次读取后你可以掌握它。

答案 1 :(得分:8)

你描述的算法实际上是O(N),但我认为常数太高了。另一个看起来合理的解决方案是使用O(N * log(N))算法,方法如下:

* create sorted container (std::multiset) of first 1000 numbers
* in loop (j=1, j<(3600000-1000); ++j)
   - calculate range
   - remove from the set number which is now irrelevant (i.e. in index *j - 1* of the array)
   - add to set new relevant number  (i.e. in index *j+1000-1* of the array)

我认为它应该更快,因为常数要低得多。

答案 2 :(得分:6)

这是 min-queue 的良好应用 - 一个队列(First-In,First-Out = FIFO),它可以同时跟踪它包含的最小元素,并且具有摊销的常数 - 时间更新。当然,最大队列基本上是相同的。

一旦你有了这个数据结构,你可以考虑CurrentMax(过去1000个元素)减去CurrentMin,将其存储为BestSoFar,然后推送一个新值并弹出旧值,然后再次检查。这样,不断更新BestSoFar,直到最终值成为您问题的解决方案。每一步都需要分摊常数,因此整个过程是线性的,我所知道的实现具有良好的标量常数(它很快)。

我不知道有关min-queue的任何文档 - 这是我与同事合作提出的数据结构。您可以通过在内部跟踪数据的每个连续子序列中的最少元素的二叉树来实现它。它简化了您只能从结构的一端弹出数据的问题。

如果您对更多细节感兴趣,我可以尝试提供它们。我正在考虑将这个数据结构写成arxiv的论文。另请注意,Tarjan和其他人之前已经建立了一个更强大的min-deque结构,可以在这里工作,但实现起来要复杂得多。您可以google for "mindeque"阅读有关Tarjan等人的工作。

答案 3 :(得分:0)

算法理念:

获取前1000个数据值并对其进行排序 排序中的最后一个 - 第一个是范围(数据+ 0,数据+ 999) 然后从排序堆中删除具有值data [0]
的第一个元素 并添加元素数据[1000]
现在,排序中的最后一个 - 第一个是范围(数据+ 1,数据+ 1000) 重复完成

// This should run in (DATA_LEN - RANGE_WIDTH)log(RANGE_WIDTH)
#include <set>
#include <algorithm>
using namespace std;

const int DATA_LEN = 3600000;
double* const data = new double (DATA_LEN);

....
....

const int RANGE_WIDTH = 1000;
double range = new double(DATA_LEN - RANGE_WIDTH);
multiset<double> data_set;
data_set.insert(data[i], data[RANGE_WIDTH]);

for (int i = 0 ; i < DATA_LEN - RANGE_WIDTH - 1 ; i++)
{
   range[i] = *data_set.end() - *data_set.begin();
   multiset<double>::iterator iter = data_set.find(data[i]);
   data_set.erase(iter);
   data_set.insert(data[i+1]);
}
range[i] = *data_set.end() - *data_set.begin();

// range now holds the values you seek

你可能应该通过1个错误来检查这个错误,但是想法就在那里。

答案 4 :(得分:0)

std::multiset<double> range;
double currentmax = 0.0;
for (int i = 0;  i < 3600000;  ++i)
{
    if (i >= 1000)
        range.erase(range.find(data[i-1000]));
    range.insert(data[i]);
    if (i >= 999)
        currentmax = max(currentmax, *range.rbegin());
}

注意未经测试的代码。

编辑:修复了一个错误。

答案 5 :(得分:0)

  1. 读入前1000个数字。
  2. 创建一个跟踪当前1000号码的1000元素链接列表。
  3. 创建一个指向链接列表节点的指针的1000个元素数组,1-1映射。
  4. 根据链表节点的值对指针数组进行排序。这将重新排列数组,但保持链表完好无损。
  5. 现在可以通过检查指针数组的第一个和最后一个元素来计算前1000个数字的范围。
  6. 删除第一个插入的元素,可以是头部或尾部,具体取决于您创建链接列表的方式。使用节点的值对指针数组执行二进制搜索,以找到要删除的节点的指针,并将数组移一遍以将其删除。
  7. 将第1001个元素添加到链接列表,并通过执行插入排序的一个步骤,将指针插入到数组中的正确位置。这将使数组保持排序。
  8. 现在你有了分钟。最多1到1001之间的数字值,可以使用指针数组的第一个和最后一个元素计算范围。
  9. 现在应该明白你需要为数组的其余部分做些什么。
  10. 算法应为O(n),因为删除和插入受log(1e3)限制,其他一切都需要恒定时间。

答案 6 :(得分:0)

我决定看看解决这个问题我能想到的最有效的算法是使用实​​际代码和实际时序。我首先创建了一个简单的解决方案,一个使用循环缓冲区跟踪前n个条目的最小值/最大值,以及测量速度的测试工具。在简单的解决方案中,每个数据值与最小值/最大值的集合进行比较,因此关于window_size * count测试(原始问题中的窗口大小为1000,计数为3600000)。

然后我想到了如何让它更快。首先,我创建了一个使用fifo队列来存储window_size值的解决方案和一个链接列表,用于按升序存储值,其中链表中的每个节点也是队列中的节点。要处理数据值,fifo末尾的项目已从链接列表和队列中删除。新值已添加到队列的开头,并使用线性搜索来查找链接列表中的位置。然后可以从链表的开头和结尾读取最小值和最大值。这很快,但随着window_size的增加(即线性)不能很好地扩展。

所以我决定在系统中添加一个二叉树,试图加快算法的搜索部分。 window_size = 1000和count = 3600000的最终时间是:

Simple: 106875
Quite Complex: 1218
Complex: 1219

既有预期也有意外。预计使用排序链表帮助,出乎意料的是,拥有自平衡树的开销并没有抵消更快搜索的优势。我尝试了后两个窗口大小增加,发现它们总是几乎相同,最高可达到10万的window_size。

这一切都表明,对算法的理论是一回事,实现它们是另一回事。

无论如何,对于那些感兴趣的人,这是我写的代码(有很多!):

Range.h:

#include <algorithm>
#include <iostream>
#include <ctime>

using namespace std;

//  Callback types.
typedef void (*OutputCallback) (int min, int max);
typedef int (*GeneratorCallback) ();

//  Declarations of the test functions.
clock_t Simple (int, int, GeneratorCallback, OutputCallback);
clock_t QuiteComplex (int, int, GeneratorCallback, OutputCallback);
clock_t Complex (int, int, GeneratorCallback, OutputCallback);

main.cpp中:

#include "Range.h"

int
  checksum;

//  This callback is used to get data.
int CreateData ()
{
  return rand ();
}

//  This callback is used to output the results.
void OutputResults (int min, int max)
{
  //cout << min << " - " << max << endl;
  checksum += max - min;
}

//  The program entry point.
void main ()
{
  int
    count = 3600000,
    window = 1000;

  srand (0);
  checksum = 0;
  std::cout << "Simple: Ticks = " << Simple (count, window, CreateData, OutputResults) << ", checksum = " << checksum << std::endl;
  srand (0);
  checksum = 0;
  std::cout << "Quite Complex: Ticks = " << QuiteComplex (count, window, CreateData, OutputResults) << ", checksum = " << checksum << std::endl;
  srand (0);
  checksum = 0;
  std::cout << "Complex: Ticks = " << Complex (count, window, CreateData, OutputResults) << ", checksum = " << checksum << std::endl;
}

Simple.cpp:

#include "Range.h"

//  Function to actually process the data.
//  A circular buffer of min/max values for the current window is filled
//  and once full, the oldest min/max pair is sent to the output callback
//  and replaced with the newest input value. Each value inputted is 
//  compared against all min/max pairs.
void ProcessData
(
  int count,
  int window,
  GeneratorCallback input,
  OutputCallback output,
  int *min_buffer,
  int *max_buffer
)
{
  int
    i;

  for (i = 0 ; i < window ; ++i)
  {
    int
      value = input ();

    min_buffer [i] = max_buffer [i] = value;

    for (int j = 0 ; j < i ; ++j)
    {
      min_buffer [j] = min (min_buffer [j], value);
      max_buffer [j] = max (max_buffer [j], value);
    }
  }

  for ( ; i < count ; ++i)
  {
    int
      index = i % window;

    output (min_buffer [index], max_buffer [index]);

    int
      value = input ();

    min_buffer [index] = max_buffer [index] = value;

    for (int k = (i + 1) % window ; k != index ; k = (k + 1) % window)
    {
      min_buffer [k] = min (min_buffer [k], value);
      max_buffer [k] = max (max_buffer [k], value);
    }
  }

  output (min_buffer [count % window], max_buffer [count % window]);
}

//  A simple method of calculating the results.
//  Memory management is done here outside of the timing portion.
clock_t Simple
(
  int count,
  int window,
  GeneratorCallback input,
  OutputCallback output
)
{
  int
    *min_buffer = new int [window],
    *max_buffer = new int [window];

  clock_t
    start = clock ();

  ProcessData (count, window, input, output, min_buffer, max_buffer);

  clock_t
    end = clock ();

  delete [] max_buffer;
  delete [] min_buffer;

  return end - start;
}

QuiteComplex.cpp:

#include "Range.h"

template <class T>
class Range
{
private:
  //  Class Types

  //  Node Data
  //  Stores a value and its position in various lists.
  struct Node
  {
    Node
      *m_queue_next,
      *m_list_greater,
      *m_list_lower;

    T
      m_value;
  };

public:
  //  Constructor
  //  Allocates memory for the node data and adds all the allocated
  //  nodes to the unused/free list of nodes.
  Range
  (
    int window_size
  ) :
    m_nodes (new Node [window_size]),
    m_queue_tail (m_nodes),
    m_queue_head (0),
    m_list_min (0),
    m_list_max (0),
    m_free_list (m_nodes)
  {
    for (int i = 0 ; i < window_size - 1 ; ++i)
    {
      m_nodes [i].m_list_lower = &m_nodes [i + 1];
    }

    m_nodes [window_size - 1].m_list_lower = 0;
  }

  //  Destructor
  //  Tidy up allocated data.
  ~Range ()
  {
    delete [] m_nodes;
  }

  //  Function to add a new value into the data structure.
  void AddValue
  (
    T value
  )
  {
    Node
      *node = GetNode ();

    //  clear links
    node->m_queue_next = 0;

    //  set value of node
    node->m_value = value;

    //  find place to add node into linked list
    Node
      *search;

    for (search = m_list_max ; search ; search = search->m_list_lower)
    {
      if (search->m_value < value)
      {
        if (search->m_list_greater)
        {
          node->m_list_greater = search->m_list_greater;
          search->m_list_greater->m_list_lower = node;
        }
        else
        {
          m_list_max = node;
        }

        node->m_list_lower = search;
        search->m_list_greater = node;
      }
    }

    if (!search)
    {
      m_list_min->m_list_lower = node;
      node->m_list_greater = m_list_min;
      m_list_min = node;
    }
  }

  //  Accessor to determine if the first output value is ready for use.
  bool RangeAvailable ()
  {
    return !m_free_list;
  }

  //  Accessor to get the minimum value of all values in the current window.
  T Min ()
  {
    return m_list_min->m_value;
  }

  //  Accessor to get the maximum value of all values in the current window.
  T Max ()
  {
    return m_list_max->m_value;
  }

private:
  //  Function to get a node to store a value into.
  //  This function gets nodes from one of two places:
  //    1. From the unused/free list
  //    2. From the end of the fifo queue, this requires removing the node from the list and tree
  Node *GetNode ()
  {
    Node
      *node;

    if (m_free_list)
    {
      //  get new node from unused/free list and place at head
      node = m_free_list;

      m_free_list = node->m_list_lower;

      if (m_queue_head)
      {
        m_queue_head->m_queue_next = node;
      }

      m_queue_head = node;
    }
    else
    {
      //  get node from tail of queue and place at head
      node = m_queue_tail;

      m_queue_tail = node->m_queue_next;
      m_queue_head->m_queue_next = node;
      m_queue_head = node;

      //  remove node from linked list
      if (node->m_list_lower)
      {
        node->m_list_lower->m_list_greater = node->m_list_greater;
      }
      else
      {
        m_list_min = node->m_list_greater;
      }

      if (node->m_list_greater)
      {
        node->m_list_greater->m_list_lower = node->m_list_lower;
      }
      else
      {
        m_list_max = node->m_list_lower;
      }
    }

    return node;
  }

  //  Member Data.
  Node
    *m_nodes,
    *m_queue_tail,
    *m_queue_head,
    *m_list_min,
    *m_list_max,
    *m_free_list;
};

//  A reasonable complex but more efficent method of calculating the results.
//  Memory management is done here outside of the timing portion.
clock_t QuiteComplex
(
  int size,
  int window,
  GeneratorCallback input,
  OutputCallback output
)
{
  Range <int>
    range (window);

  clock_t
    start = clock ();

  for (int i = 0 ; i < size ; ++i)
  {   
    range.AddValue (input ());

    if (range.RangeAvailable ())
    {
      output (range.Min (), range.Max ());
    }
  }

  clock_t
    end = clock ();

  return end - start;
}

Complex.cpp:

#include "Range.h"

template <class T>
class Range
{
private:
  //  Class Types

  //  Red/Black tree node colours.
  enum NodeColour
  {
    Red,
    Black
  };

  //  Node Data
  //  Stores a value and its position in various lists and trees.
  struct Node
  {
    //  Function to get the sibling of a node.
    //  Because leaves are stored as null pointers, it must be possible
    //  to get the sibling of a null pointer. If the object is a null pointer
    //  then the parent pointer is used to determine the sibling.
    Node *Sibling
    (
      Node *parent
    )
    {
      Node
        *sibling;

      if (this)
      {
        sibling = m_tree_parent->m_tree_less == this ? m_tree_parent->m_tree_more : m_tree_parent->m_tree_less;
      }
      else
      {
        sibling = parent->m_tree_less ? parent->m_tree_less : parent->m_tree_more;
      }

      return sibling;
    }

    //  Node Members
    Node
      *m_queue_next,
      *m_tree_less,
      *m_tree_more,
      *m_tree_parent,
      *m_list_greater,
      *m_list_lower;

    NodeColour
      m_colour;

    T
      m_value;
  };

public:
  //  Constructor
  //  Allocates memory for the node data and adds all the allocated
  //  nodes to the unused/free list of nodes.
  Range
  (
    int window_size
  ) :
    m_nodes (new Node [window_size]),
    m_queue_tail (m_nodes),
    m_queue_head (0),
    m_tree_root (0),
    m_list_min (0),
    m_list_max (0),
    m_free_list (m_nodes)
  {
    for (int i = 0 ; i < window_size - 1 ; ++i)
    {
      m_nodes [i].m_list_lower = &m_nodes [i + 1];
    }

    m_nodes [window_size - 1].m_list_lower = 0;
  }

  //  Destructor
  //  Tidy up allocated data.
  ~Range ()
  {
    delete [] m_nodes;
  }

  //  Function to add a new value into the data structure.
  void AddValue
  (
    T value
  )
  {
    Node
      *node = GetNode ();

    //  clear links
    node->m_queue_next = node->m_tree_more = node->m_tree_less = node->m_tree_parent = 0;

    //  set value of node
    node->m_value = value;

    //  insert node into tree
    if (m_tree_root)
    {
      InsertNodeIntoTree (node);
      BalanceTreeAfterInsertion (node);
    }
    else
    {
      m_tree_root = m_list_max = m_list_min = node;
      node->m_tree_parent = node->m_list_greater = node->m_list_lower = 0;
    }

    m_tree_root->m_colour = Black;
  }

  //  Accessor to determine if the first output value is ready for use.
  bool RangeAvailable ()
  {
    return !m_free_list;
  }

  //  Accessor to get the minimum value of all values in the current window.
  T Min ()
  {
    return m_list_min->m_value;
  }

  //  Accessor to get the maximum value of all values in the current window.
  T Max ()
  {
    return m_list_max->m_value;
  }

private:
  //  Function to get a node to store a value into.
  //  This function gets nodes from one of two places:
  //    1. From the unused/free list
  //    2. From the end of the fifo queue, this requires removing the node from the list and tree
  Node *GetNode ()
  {
    Node
      *node;

    if (m_free_list)
    {
      //  get new node from unused/free list and place at head
      node = m_free_list;

      m_free_list = node->m_list_lower;

      if (m_queue_head)
      {
        m_queue_head->m_queue_next = node;
      }

      m_queue_head = node;
    }
    else
    {
      //  get node from tail of queue and place at head
      node = m_queue_tail;

      m_queue_tail = node->m_queue_next;
      m_queue_head->m_queue_next = node;
      m_queue_head = node;

      //  remove node from tree
      node = RemoveNodeFromTree (node);
      RebalanceTreeAfterDeletion (node);

      //  remove node from linked list
      if (node->m_list_lower)
      {
        node->m_list_lower->m_list_greater = node->m_list_greater;
      }
      else
      {
        m_list_min = node->m_list_greater;
      }

      if (node->m_list_greater)
      {
        node->m_list_greater->m_list_lower = node->m_list_lower;
      }
      else
      {
        m_list_max = node->m_list_lower;
      }
    }

    return node;
  }

  //  Rebalances the tree after insertion
  void BalanceTreeAfterInsertion
  (
    Node *node
  )
  {
    node->m_colour = Red;

    while (node != m_tree_root && node->m_tree_parent->m_colour == Red)
    {
      if (node->m_tree_parent == node->m_tree_parent->m_tree_parent->m_tree_more)
      {
        Node
          *uncle = node->m_tree_parent->m_tree_parent->m_tree_less;

        if (uncle && uncle->m_colour == Red)
        {
          node->m_tree_parent->m_colour = Black;
          uncle->m_colour = Black;
          node->m_tree_parent->m_tree_parent->m_colour = Red;
          node = node->m_tree_parent->m_tree_parent;
        }
        else
        {
          if (node == node->m_tree_parent->m_tree_less)
          {
            node = node->m_tree_parent;
            LeftRotate (node);
          }

          node->m_tree_parent->m_colour = Black;
          node->m_tree_parent->m_tree_parent->m_colour = Red;
          RightRotate (node->m_tree_parent->m_tree_parent);
        }
      }
      else
      {
        Node
          *uncle = node->m_tree_parent->m_tree_parent->m_tree_more;

        if (uncle && uncle->m_colour == Red)
        {
          node->m_tree_parent->m_colour = Black;
          uncle->m_colour = Black;
          node->m_tree_parent->m_tree_parent->m_colour = Red;
          node = node->m_tree_parent->m_tree_parent;
        }
        else
        {
          if (node == node->m_tree_parent->m_tree_more)
          {
            node = node->m_tree_parent;
            RightRotate (node);
          }

          node->m_tree_parent->m_colour = Black;
          node->m_tree_parent->m_tree_parent->m_colour = Red;
          LeftRotate (node->m_tree_parent->m_tree_parent);
        }
      }
    }
  }

  //  Adds a node into the tree and sorted linked list
  void InsertNodeIntoTree
  (
    Node *node
  )
  {
    Node
      *parent = 0,
      *child = m_tree_root;

    bool
      greater;

    while (child)
    {
      parent = child;
      child = (greater = node->m_value > child->m_value) ? child->m_tree_more : child->m_tree_less;
    }

    node->m_tree_parent = parent;

    if (greater)
    {
      parent->m_tree_more = node;

      //  insert node into linked list
      if (parent->m_list_greater)
      {
        parent->m_list_greater->m_list_lower = node;
      }
      else
      {
        m_list_max = node;
      }

      node->m_list_greater = parent->m_list_greater;
      node->m_list_lower = parent;
      parent->m_list_greater = node;
    }
    else
    {
      parent->m_tree_less = node;

      //  insert node into linked list
      if (parent->m_list_lower)
      {
        parent->m_list_lower->m_list_greater = node;
      }
      else
      {
        m_list_min = node;
      }

      node->m_list_lower = parent->m_list_lower;
      node->m_list_greater = parent;
      parent->m_list_lower = node;
    }
  }

  //  Red/Black tree manipulation routine, used for removing a node
  Node *RemoveNodeFromTree
  (
    Node *node
  )
  {
    if (node->m_tree_less && node->m_tree_more)
    {
      //  the complex case, swap node with a child node
      Node
        *child;

      if (node->m_tree_less)
      {
        // find largest value in lesser half (node with no greater pointer)
        for (child = node->m_tree_less ; child->m_tree_more ; child = child->m_tree_more)
        {
        }
      }
      else
      {
        // find smallest value in greater half (node with no lesser pointer)
        for (child = node->m_tree_more ; child->m_tree_less ; child = child->m_tree_less)
        {
        }
      }

      swap (child->m_colour, node->m_colour);

      if (child->m_tree_parent != node)
      {
        swap (child->m_tree_less, node->m_tree_less);
        swap (child->m_tree_more, node->m_tree_more);
        swap (child->m_tree_parent, node->m_tree_parent);

        if (!child->m_tree_parent)
        {
          m_tree_root = child;
        }
        else
        {
          if (child->m_tree_parent->m_tree_less == node)
          {
            child->m_tree_parent->m_tree_less = child;
          }
          else
          {
            child->m_tree_parent->m_tree_more = child;
          }
        }

        if (node->m_tree_parent->m_tree_less == child)
        {
          node->m_tree_parent->m_tree_less = node;
        }
        else
        {
          node->m_tree_parent->m_tree_more = node;
        }
      }
      else
      {
        child->m_tree_parent = node->m_tree_parent;
        node->m_tree_parent = child;

        Node
          *child_less = child->m_tree_less,
          *child_more = child->m_tree_more;

        if (node->m_tree_less == child)
        {
          child->m_tree_less = node;
          child->m_tree_more = node->m_tree_more;
          node->m_tree_less = child_less;
          node->m_tree_more = child_more;
        }
        else
        {
          child->m_tree_less = node->m_tree_less;
          child->m_tree_more = node;
          node->m_tree_less = child_less;
          node->m_tree_more = child_more;
        }

        if (!child->m_tree_parent)
        {
          m_tree_root = child;
        }
        else
        {
          if (child->m_tree_parent->m_tree_less == node)
          {
            child->m_tree_parent->m_tree_less = child;
          }
          else
          {
            child->m_tree_parent->m_tree_more = child;
          }
        }
      }

      if (child->m_tree_less)
      {
        child->m_tree_less->m_tree_parent = child;
      }

      if (child->m_tree_more)
      {
        child->m_tree_more->m_tree_parent = child;
      }

      if (node->m_tree_less)
      {
        node->m_tree_less->m_tree_parent = node;
      }

      if (node->m_tree_more)
      {
        node->m_tree_more->m_tree_parent = node;
      }
    }

    Node
      *child = node->m_tree_less ? node->m_tree_less : node->m_tree_more;

    if (node->m_tree_parent->m_tree_less == node)
    {
      node->m_tree_parent->m_tree_less = child;
    }
    else
    {
      node->m_tree_parent->m_tree_more = child;
    }

    if (child)
    {
      child->m_tree_parent = node->m_tree_parent;
    }

    return node;
  }

  //  Red/Black tree manipulation routine, used for rebalancing a tree after a deletion
  void RebalanceTreeAfterDeletion
  (
    Node *node
  )
  {
    Node
      *child = node->m_tree_less ? node->m_tree_less : node->m_tree_more;

    if (node->m_colour == Black)
    {
      if (child && child->m_colour == Red)
      {
        child->m_colour = Black;
      }
      else
      {
        Node
          *parent = node->m_tree_parent,
          *n = child;

        while (parent)
        {
          Node
            *sibling = n->Sibling (parent);

          if (sibling && sibling->m_colour == Red)
          {
            parent->m_colour = Red;
            sibling->m_colour = Black;

            if (n == parent->m_tree_more)
            {
              LeftRotate (parent);
            }
            else
            {
              RightRotate (parent);
            }
          }

          sibling = n->Sibling (parent);

          if (parent->m_colour == Black &&
            sibling->m_colour == Black &&
            (!sibling->m_tree_more || sibling->m_tree_more->m_colour == Black) &&
            (!sibling->m_tree_less || sibling->m_tree_less->m_colour == Black))
          {
            sibling->m_colour = Red;
            n = parent;
            parent = n->m_tree_parent;
            continue;
          }
          else
          {
            if (parent->m_colour == Red &&
              sibling->m_colour == Black &&
              (!sibling->m_tree_more || sibling->m_tree_more->m_colour == Black) &&
              (!sibling->m_tree_less || sibling->m_tree_less->m_colour == Black))
            {
              sibling->m_colour = Red;
              parent->m_colour = Black;
              break;
            }
            else
            {
              if (n == parent->m_tree_more &&
                sibling->m_colour == Black &&
                (sibling->m_tree_more && sibling->m_tree_more->m_colour == Red) &&
                (!sibling->m_tree_less || sibling->m_tree_less->m_colour == Black))
              {
                sibling->m_colour = Red;
                sibling->m_tree_more->m_colour = Black;
                RightRotate (sibling);
              }
              else
              {
                if (n == parent->m_tree_less &&
                  sibling->m_colour == Black &&
                  (!sibling->m_tree_more || sibling->m_tree_more->m_colour == Black) &&
                  (sibling->m_tree_less && sibling->m_tree_less->m_colour == Red))
                {
                  sibling->m_colour = Red;
                  sibling->m_tree_less->m_colour = Black;
                  LeftRotate (sibling);
                }
              }

              sibling = n->Sibling (parent);
              sibling->m_colour = parent->m_colour;
              parent->m_colour = Black;

              if (n == parent->m_tree_more)
              {
                sibling->m_tree_less->m_colour = Black;
                LeftRotate (parent);
              }
              else
              {
                sibling->m_tree_more->m_colour = Black;
                RightRotate (parent);
              }
              break;
            }
          }
        }
      }
    }
  }

  //  Red/Black tree manipulation routine, used for balancing the tree
  void LeftRotate
  (
    Node *node
  )
  {
    Node
      *less = node->m_tree_less;

    node->m_tree_less = less->m_tree_more;

    if (less->m_tree_more)
    {
      less->m_tree_more->m_tree_parent = node;
    }

    less->m_tree_parent = node->m_tree_parent;

    if (!node->m_tree_parent)
    {
      m_tree_root = less;
    }
    else
    {
      if (node == node->m_tree_parent->m_tree_more)
      {
        node->m_tree_parent->m_tree_more = less;
      }
      else
      {
        node->m_tree_parent->m_tree_less = less;
      }
    }

    less->m_tree_more = node;
    node->m_tree_parent = less;
  }

  //  Red/Black tree manipulation routine, used for balancing the tree
  void RightRotate
  (
    Node *node
  )
  {
    Node
      *more = node->m_tree_more;

    node->m_tree_more = more->m_tree_less;

    if (more->m_tree_less)
    {
      more->m_tree_less->m_tree_parent = node;
    }

    more->m_tree_parent = node->m_tree_parent;

    if (!node->m_tree_parent)
    {
      m_tree_root = more;
    }
    else
    {
      if (node == node->m_tree_parent->m_tree_less)
      {
        node->m_tree_parent->m_tree_less = more;
      }
      else
      {
        node->m_tree_parent->m_tree_more = more;
      }
    }

    more->m_tree_less = node;
    node->m_tree_parent = more;
  }

  //  Member Data.
  Node
    *m_nodes,
    *m_queue_tail,
    *m_queue_head,
    *m_tree_root,
    *m_list_min,
    *m_list_max,
    *m_free_list;
};

//  A complex but more efficent method of calculating the results.
//  Memory management is done here outside of the timing portion.
clock_t Complex
(
  int count,
  int window,
  GeneratorCallback input,
  OutputCallback output
)
{
  Range <int>
    range (window);

  clock_t
    start = clock ();

  for (int i = 0 ; i < count ; ++i)
  {   
    range.AddValue (input ());

    if (range.RangeAvailable ())
    {
      output (range.Min (), range.Max ());
    }
  }

  clock_t
    end = clock ();

  return end - start;
}